Abstract:
Ducting and/or duct couplings can be formed from shape memory polymer material, with the material for example being additively manufactured. The use of shape memory polymer material for one or more of the duct portions may allow for easier installation of the ducting, for example allowing the ducting to be warped and/or bent to fit into or through places that are hard to reach or hard to maneuver through, with the ducting then heated to cause it to return to a predetermined memory shape. The coupling of duct portions together may be accomplished by the duct portions including a shape memory polymer material, with for example ends of the duct portions fitted together, and then heated to use a shape memory property of the material to effect coupling. Heating of the shape memory polymer material also softens the material, allowing it to move to a previously set shape.
Abstract:
Methods and apparatus for a near-field signal system to generate signals underwater for navigation and/or communication. In one embodiment, a system includes a signal processing module coupled to a first antenna to transmit near-field signals underwater and a second antenna to receive near-field signals underwater transmitted by the first antenna. In one embodiment, a wetsuit includes an integrated near-field signal system.
Abstract:
Methods and apparatus for a near-field signal system to generate signals underwater for navigation and/or communication. In one embodiment, a system includes a signal processing module coupled to a first antenna to transmit near-field signals underwater and a second antenna to receive near-field signals underwater transmitted by the first antenna. In one embodiment, a wetsuit includes an integrated near-field signal system.
Abstract:
A robotic finger includes a shape-memory alloy and a shape-memory polymer connected to and adjacent to the shape-memory alloy. Heating the shape-memory polymer causes it to soften, heating the shape-memory alloy causes the alloy to bend in the direction of the shape-memory polymer to press the shape-memory polymer against an object to be grasped, and cooling the shape-memory polymer causes it to stiffen and to retain its shape. An opposing member is positioned to cooperate with the finger to grasp an object positioned between the finger and the opposing member. A selectively controllable heat source is capable of applying heat to the finger.
Abstract:
A system includes a structure configured to undergo oscillatory movement. The system also includes a friction damping clamp coupled to the structure. The friction damping clamp includes a housing having a groove. The friction damping clamp also includes a roller positioned at least partially within the groove, where the groove has first and second ramps. The roller is configured to move up each ramp of the groove so that more compression is applied on the structure and to move down each ramp of the groove so that less compression is applied on the structure. The roller may be configured to apply more compression on the structure to increase friction between portions of the structure, to apply less compression on the structure to decrease friction between the portions of the structure, and to apply substantially no compression on the structure when the roller is located at a center of the groove.
Abstract:
An air vehicle wing includes foldable ribs coupled to a leading-edge spar. The ribs each have multiple rib segments which are foldable (hinged) relative to each other. Extension linkages, each with multiple extension linkage segments, pass through openings in the rib segments, and may be coupled to the rib segments with pin couplings, able to change relative angle between the individual rib segments and the extension linkage segments to which they are coupled. A skin may cover the ribs, to provide an outer surface of the wing that may be unfolded as the wing is expanded from a stowed, small-chord condition, to a deployed, large-chord condition.
Abstract:
A rocket motor has an electrically operated propellant initiator for a propellant grain that includes an electrode arrangement configured to concentrate an electric field at an ignition electrode for igniting an electrically operated propellant. The rocket motor includes a combustion chamber containing at least one propellant grain and an electrically operated propellant initiator operatively coupled to the propellant grain to initiate combustion of the propellant grain. The electrically operated propellant initiator includes the electrically operated propellant and at least one pair of electrodes configured to ignite the electrically operated propellant. The pair of electrodes includes a ground plane electrode and an ignition electrode. When an electrical input is applied to the electrically operated propellant initiator, the electric field is concentrated at the ignition electrode to ignite the electrically operated propellant at the location where the ignition electrode is arranged.
Abstract:
Ducting and/or duct couplings can be formed from shape memory polymer material, with the material for example being additively manufactured. The use of shape memory polymer material for one or more of the duct portions may allow for easier installation of the ducting, for example allowing the ducting to be warped and/or bent to fit into or through places that are hard to reach or hard to maneuver through, with the ducting then heated to cause it to return to a predetermined memory shape. The coupling of duct portions together may be accomplished by the duct portions including a shape memory polymer material, with for example ends of the duct portions fitted together, and then heated to use a shape memory property of the material to effect coupling. Heating of the shape memory polymer material also softens the material, allowing it to move to a previously set shape.
Abstract:
A spacecraft, such as a satellite, uses a shape memory polymer actuator to deploy one or more deployable parts. The shape memory polymer actuator may be formed integrally with a deployable part and/or with a fuselage or other structure of the spacecraft, with the shape memory polymer actuator being for example a relatively thin portion of the shape memory polymer material of the integral structure. The shape memory actuator allows deployment of the deployable part(s) upon heating of the shape memory polymer material of the actuator, such as after the satellite has been launched into space. The heating may be caused by a heat source that is part of the spacecraft itself, or may be merely the result of exposing the spacecraft to solar heating after launch. The deployable part of the spacecraft may include any of a wide variety of parts that are used after launch.
Abstract:
A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.