Abstract:
The present invention provides determinate, delayed-ripening cherry tomato plants. The plants are hybrids, such as line 94478 (ATCC Accession No. 97315), derived from the determinate, non-ripening parental line 91047-15 (ATCC Accession No. 97316).
Abstract:
Aircraft floor panels where core-skin bonding is improved between honeycomb and composite face sheets (skins) by applying a nylon-based (polyamide) adhesive to the edge of the honeycomb prior to bonding. Edge coating of the honeycomb allows one to reduce panel weight without reducing the performance parameters that are required for different types of aircraft floor panels.
Abstract:
The present invention comprises a method determining a corrective design for a system component exhibiting time-in-service reliability concerns. The method comprises the steps of establishing a plurality of remote customer databases for collecting service data for a system component, receiving at a centralized database during a predetermined period of time at least one parameter representative of a failure rate for the system component based at least in part on the service data and determining if the at least one parameter represents a system component defect. When the at least one parameter represents a system component defect, the method includes determining at least one failure mode of the system component based at least in part on the at least one received parameter and determining a corrective design for the system component based at least in part on the at least one failure mode.
Abstract:
A novel gene 0161P2F10B (also designated 161P2F10B) and its encoded protein, and variants thereof, are described wherein 161P2F10B exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 161P2F10B provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 161P2F10B gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 161P2F10B can be used in active or passive immunization.
Abstract:
Novel genes designated and set forth in FIG. 2 and their respective encoded proteins, and variants thereof, are described wherein a gene of the invention exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers such as those listed in Table I. Consequently, of gene products of a gene of FIG. 2 provide diagnostic, prognostic, prophylactic and/or therapeutic targets for cancer. A gene of FIG. 2 or fragment thereof, its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with a gene product of FIG. 2 can be used in active or passive immunization.
Abstract:
A novel gene (designated 213P1F11) and its encoded protein, and variants thereof, are described wherein 213P1F11 exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 213P1F11 provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 213P1F11 gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 213P1F11 can be used in active or passive immunization.
Abstract:
A novel gene (designated 238P1B2) and its encoded protein, and variants thereof, are described wherein 238P1B2 exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 238P1B2 provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 238P1B2 gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 238P1B2 can be used in active or passive immunization.
Abstract:
Anodized aluminum foil sheets and expanded aluminum foil (EAF) and composites containing the same are disclosed. Methods of making anodized aluminum foil sheets and expanded aluminum foil (EAF) and composites containing the same are also disclosed. Methods of using anodized aluminum foil sheets and expanded aluminum foil (EAF) and composites containing the same are further disclosed.