Abstract:
An ultrasonic transducer device includes a base, a first electrode film, a piezoelectric film, a second electrode film and a first conductive film. The base has a plurality of vibrating film portions arranged in an array pattern. The first electrode film is disposed on each of the vibrating film portions. The piezoelectric film is disposed on the first electrode film. The second electrode film is disposed on the piezoelectric film. The first conductive film is connected to the first electrode film. The first conductive film has a film thickness larger than a film thickness of the first electrode film.
Abstract:
An ultrasonic sensor includes a plurality of ultrasonic wave elements each including a first electrode and a second electrode, and a control circuit configured to switch parallel connection and serial connection of the plurality of the ultrasonic wave elements.
Abstract:
An ultrasonic transducer device includes an ultrasonic transducer element array, a first signal terminal, and a second signal terminal. The ultrasonic transducer element array has a 1st element group to a kth element group (where k is a natural number such that k≧2). The first signal terminal is connected with a control section configured and arranged to perform at least one of receiving and transmitting of signals. The second signal terminal is connected with the first signal terminal via the ultrasonic transducer element array. Each of the 1st element group to the kth element group includes a plurality of ultrasonic transducer elements electrically connected in series. The 1st element group to the kth element group are electrically connected in parallel between the first signal terminal and the second signal terminal.
Abstract:
An ultrasonic measurement apparatus has an ultrasonic transducer device including an ultrasonic element array, a first through n-th first end-side terminal XA1 to XAn provided to a first end side, and a first through n-th second end-side terminal XB1 to XBn provided to a second end side opposing the first end side; a first transmission circuit outputting first drive signals VTA1 to VTAn to the first through n-th first end-side terminals XA1 to XAn; and a second transmission circuit outputting second drive signals VTB1 to VTBn to the first through n-th second end-side terminals XB1 to XBn.
Abstract:
A mounting structure includes: a first substrate that has a first surface on which a functional element is provided; a wiring portion that is provided at a position, which is different from a position of the functional element on the first surface, and is conductively connected to the functional element; a second substrate that has a second surface that is opposite to the first surface; and a conduction portion that is provided on the second surface, is connected to the wiring portion, and is conductively connected the functional element. The shortest distance between the functional element and the second substrate is longer than the longest distance between the second substrate and a position where the wiring portion is connected to the conduction portion.
Abstract:
An ultrasonic device includes: a substrate that includes, at a first surface thereof, one or more vibrators that generate ultrasonic waves by vibrating and a plurality of electrodes coupled to the vibrators; a protective substrate that protects the vibrators and is provided with an opening facing the electrode on a first surface side of the substrate; and a gap material that provides a gap between the substrate and the protective substrate, and in a plan view of the substrate and the protective substrate in a stacking direction thereof, the opening includes the electrode inside.
Abstract:
An ultrasonic transducer includes: a flexible film; and a piezoelectric element provided on the flexible film. The piezoelectric element includes a piezoelectric body and a first electrode, a second electrode, a third electrode, and a fourth electrode in contact with the piezoelectric body. The first electrode and the second electrode are separated from each other with the piezoelectric body interposed between the first electrode and the second electrode and overlapping each other in plan view. The third electrode and the fourth electrode are separated from each other with the piezoelectric body interposed between the third electrode and the fourth electrode and overlapping each other in the plan view. The first electrode and the third electrode are separated from each other in the plan view, and the second electrode and the fourth electrode are separated from each other in the plan view.
Abstract:
A mounting structure includes a first substrate that has a first surface on which a functional element is provided, a wiring that is provided at a position which is different from a position of the functional element on the first surface, and is connected to the functional element, a second substrate that has a second surface facing the first surface, and a conductor that is provided on the second surface, and is connected to the wiring and the functional element, in which the shortest distance between the functional element and the second substrate is longer than a distance between a position where the wiring is connected to the conductor, and the second substrate.
Abstract:
A piezoelectric element is provided with three electrodes, namely a first electrode, a second electrode, and a third electrode, arranged linearly on one side surface of a piezoelectric body at regular intervals. A polarization processing electric field is applied between the first electrode and the second electrode, and then the polarization processing electric field is applied between the second electrode and the third electrode. The polarization processing electrode field on this occasion is a half as strong as in the case of performing the polarization process of applying the electric field at a time between the first electrode and the third electrode.
Abstract:
A piezoelectric device includes: a piezoelectric film having a first surface in contact with a vibrating film and a second surface on the opposite side to the first surface; first and second electrodes that are provided on the second surface of the piezoelectric film and that are disposed at positions away from each other and are short-circuited to each other at a position away from the piezoelectric film; and a third electrode that is provided between the first and second electrodes on the second surface of the piezoelectric film and is disposed at a position away from the first and second electrodes. At least parts of the contours of end portions of the first and second electrodes are defined in parallel to side portions of the third electrode.