Abstract:
Systems and methods for real-time detection and mitigation anomalous behavior of a remote vehicle are provided, e.g., vehicle behavior that is consistent with distracted or unexpectedly disabled driving. On-board and off-board sensors associated with a subject vehicle may monitor the subject vehicle's environment, and behavior characteristics of a remote vehicle operating within the subject vehicle's environment may be determined based upon collected sensor data. The remote vehicle's behavior characteristics may be utilized to detect or determine the presence of anomalous behavior, which may be anomalous for the current contextual conditions of the vehicles' environment. Mitigating actions for detected remote vehicle anomalous behaviors may be suggested and/or automatically implemented at the subject vehicle and/or at proximate vehicles to avoid or reduce the risk of accidents, injury, or death resulting from the anomalous behavior. In some situations, authorities may be notified.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).
Abstract:
A computer-implemented method includes receiving a vehicle condition query via a computer network and retrieving condition data corresponding to a vehicle from a vehicle condition database. Further, the method includes determining a condition of the vehicle based on a collective analysis of the condition data, where the condition of the vehicle includes a market value of the vehicle and an overall quality level of the vehicle, and receiving a geographic location of a computing device. Still further, the method includes generating a vehicle condition report, where the vehicle condition report includes an interactive image of a first set of one or more visual condition descriptors indicative of the condition of the vehicle. Moreover, the method includes customizing the vehicle condition report according to the climate associated with the geographic location for the computing device, and communicating the vehicle condition report to the second computing device.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).
Abstract:
A system and method are provided for controlling an interior configuration of a vehicle following a collision. Sensor data that includes, or is derived from data that includes, data collected by one or more sensors is received, and a vehicle accident condition indicative of an accident having occurred is detected by processing the sensor data. After detecting the vehicle accident condition, an actuator component is caused to prevent a passenger from adjusting an interior vehicle component outside a predetermined range of physical configurations, while allowing the passenger to adjust the interior vehicle component within the predetermined range of physical configurations.
Abstract:
Systems and methods are provided for improving safety of one or more vehicle occupants. An example method for improving safety of one or more vehicle occupants includes accessing interior vehicle configuration data that is generated by, or derived from data generated by an interior data collection component, the data representing an interior space of a vehicle; determining, by processing the interior vehicle configuration data, location and orientation of one or more vehicle occupants; selecting a plurality of vehicle safety components to be active based on the location and orientation of the one or more vehicle occupants, and setting the plurality of vehicle safety components to an active state in which the plurality of vehicle safety components are deployed, when an emergency condition is detected.
Abstract:
A system and method are provided for improving safety of one or more vehicle occupants. The system may include an interior data collection component configured to collected interior configuration data representing a physical configuration of the interior space of the vehicle, a plurality of vehicle safety components configured to protect the one or more vehicle occupants when deployed and one or more processors configured to determine, by processing the interior vehicle configuration data, a location and orientation of the one or more vehicle occupants; select a subset of the plurality of vehicle safety components to be active based on the location and orientation of the one or more vehicle occupants; and set the selected subset of the plurality of vehicle safety components to an active state in which the selected subset of the plurality of vehicle safety components is deployed when an emergency condition is detected.
Abstract:
A system and method for measuring a driver's actual driving behaviors (e.g., acceleration, deceleration) in a manual driving mode to determine their preferred driving style, and then causing an autonomous or semi-autonomous vehicle to operate itself, within limits, in accordance with the drivers' driving style when operating in a self-driving mode, thereby providing a more familiar and comfortable driving experience for the driver. Data is collected on the actual driving behavior, any pre-existing data is accessed on the actual driving behavior, and the collected data and the pre-existing data are combined. A custom control is then created based upon the combined data, and the custom control is applied to manage the self-driving behavior of the autonomous or semi-autonomous vehicle in a self-driving mode. Additional data continues to be collected on the actual driving behavior, and the custom control is adjusted based upon the collected additional data.
Abstract:
A system and method for measuring a driver's actual driving behaviors (e.g., acceleration, deceleration) in a manual driving mode to determine their preferred driving style, and then causing an autonomous or semi-autonomous vehicle to operate itself, within limits, in accordance with the drivers' driving style when operating in a self-driving mode, thereby providing a more familiar and comfortable driving experience for the driver. Data is collected on the actual driving behavior, any pre-existing data is accessed on the actual driving behavior, and the collected data and the pre-existing data are combined. A custom control is then created based upon the combined data, and the custom control is applied to manage the self-driving behavior of the autonomous or semi-autonomous vehicle in a self-driving mode. Additional data continues to be collected on the actual driving behavior, and the custom control is adjusted based upon the collected additional data.
Abstract:
The method, system, and computer-readable medium facilitates monitoring one or more eyes of a vehicle operator during a driving session to generate a plurality of gaze location logs with gaze location values and timestamps. The gaze location value may be generated by determining a focal point of the vehicle operator's gaze, determining which of a plurality of areas of the vehicle is associated with the focal point, and assigning the gaze location value based on the area of the vehicle associated with the focal point. The gaze location logs may be analyzed to determine the duration of the vehicle operator's gaze at each area of the vehicle. Based on the duration of the vehicle operators gaze, recommendations to improve vehicle operator performance may be determined and communicated to the vehicle operator.