Abstract:
A panel for a liquid crystal display and method of fabrication are provided the panel including: a pixel electrode having a plurality of partitions connected to each other; a first wire adjacent to the pixel electrode and applied with a voltage different from a voltage applied to the pixel electrode; and a switching element connected to the pixel electrode, supplying a signal to the pixel electrode, and having a gate electrode, a source electrode, and a drain electrode, wherein a portion of the drain electrode extends between the pixel electrode and the first wire, wherein at least one of connecting members connecting the plurality of partitions of the pixel electrode covers the first wire.
Abstract:
A liquid crystal display is provided, which includes: a first substrate; a first signal line formed on the first substrate; a second signal line formed on the first substrate and intersecting the first signal line; a thin film transistor connected to the first and the second signal lines; a pixel electrode connected to the thin film transistor; a second substrate; a common electrode formed on the second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; and a tilt direction determining member formed on one of the first and the second substrates and having a notch.
Abstract:
A liquid crystal display is provided, which includes: a first substrate; a first signal line formed on the first substrate; a second signal line formed on the first substrate and intersecting the first signal line; a thin film transistor connected to the first and the second signal lines; a pixel electrode connected to the thin film transistor; a second substrate; a common electrode formed on the second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; and a tilt direction determining member formed on one of the first and the second substrates and having a notch.
Abstract:
A member for a display device includes a transparent substrate, a black matrix, a color filter and a transparent electrode. The transparent substrate includes a pixel region having a substantially V-shape and a light blocking region surrounding the pixel region. The black matrix is in the light blocking region. The color filter includes a plurality of color filter portions and a color filter overlapping portion. Each of the color filter portions is in the pixel region. The color filter overlapping portion is between adjacent color filter portions. The transparent electrode is on the color filter. The transparent electrode includes an opening that extends substantially parallel to a side of the pixel region. Therefore, an image display quality is improved.
Abstract:
A thin film transistor array panel is provided, which includes: a substrate; a first signal line formed on the substrate; a second signal line formed on the substrate and intersecting the first signal line; a thin film transistor including a gate electrode connected to the first signal line and having an edge substantially parallel to the first signal line, a source electrode connected to the second signal line, and a drain electrode overlapping the edge of the gate electrode; and a pixel electrode connected to the drain electrode.
Abstract:
A display device according to an exemplary embodiment of the present invention includes: a substrate, a plurality of gate lines formed on the substrate, a plurality of data lines formed on the substrate, a plurality of switching elements connected to the gate lines and the data lines, a plurality of clock signal transmitting lines formed on the substrate, and a gate driver connected to the gate lines and the clock signal transmitting lines. A direction of each of the clock signal transmitting lines is changed approximately ninety degrees in a first region and a second region. The regions are disposed between an edge of the substrate and the gate driver. A symmetry is present between portions of the clock signal transmitting lines arranged in the first region and the second region.
Abstract:
A display substrate includes a plurality of transistors, a plurality of color filters, a plurality of pixel electrodes, a plurality of supporting members, and a plurality of filling members. The transistors are connected to a plurality of gate lines extending in a first direction on a base substrate and a plurality of data lines extending in a second direction crossing the first direction. The color filters are disposed over the transistors, and have a plurality of holes. The pixel electrodes are disposed on the color filters, and electrically connect to the transistors. The supporting members are disposed on the color filters, and maintain a gap between the base substrate and a substrate opposing the base substrate. The filling members are comprised of the same material as the supporting members, and fill the holes.
Abstract:
A thin film transistor array panel is provided, which includes: a substrate; a first signal line formed on the substrate; a second signal line formed on the substrate and intersecting the first signal line; a thin film transistor including a gate electrode connected to the first signal line and having an edge substantially parallel to the first signal line, a source electrode connected to the second signal line, and a drain electrode overlapping the edge of the gate electrode; and a pixel electrode connected to the drain electrode.
Abstract:
A thin film transistor array panel is provided, which includes: a substrate; a first signal line formed on the substrate; a second signal line formed on the substrate and intersecting the first signal line; a thin film transistor including a gate electrode connected to the first signal line and having an edge substantially parallel to the first signal line, a source electrode connected to the second signal line, and a drain electrode overlapping the edge of the gate electrode; and a pixel electrode connected to the drain electrode.
Abstract:
A liquid crystal display is provided, which includes: a first substrate; a first signal line formed on the first substrate; a second signal line formed on the first substrate and intersecting the first signal line; a thin film transistor connected to the first and the second signal lines; a pixel electrode connected to the thin film transistor; a second substrate; a common electrode formed on the second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; and a tilt direction determining member formed on one of the first and the second substrates and having a notch.