Abstract:
A first strand of interconnected hollow polymeric chambers is connected to a second strand of interconnected hollow polymeric chambers. A connecting portion of the first strand has an outer surface contour conforming to a portion of the inner surface of a chamber. A partial chamber is formed on the end of the second strand, the partial chamber having an inner surface that conforms to the outer surface of the connecting portion. The connecting portion is inserted into the partial chamber and the two strands are held together by adhesive.
Abstract:
A clothing jacket carried pressurized gas assembly comprising a jacket back panel structure; first looping pipe coil structure carried by the jacket in overlying relation to the back panel structure and having flexible construction, whereby the coil structure and back panel structure may be conformed to the body of the wearer; the looping coil structure having pressurized gas inlet and outlet fittings associated therewith, whereby the looping pipe coil structure may receive pressurized gas for transport by the wearer.
Abstract:
An oxygen belt breathing pack includes at least one flexible polymeric pressure vessel connected with sections of flexible conduit to either a sealing fitting, an inlet fitting, another section of flexible conduit attached to another pressure vessel or a manifold. The manifold provides connections for a high pressure regulator and oxygen fill source. The pressure vessel and sections of flexible conduit are encased in high strength fiber material. The pressure vessel is wrapped in high strength ballistic ribbon material. The high pressure regulator is connected to a low pressure hose connected to a nasal cannula. A flexible container is formed of resilient material, and is sized and shaped to accommodate the at least one pressure vessel, the sections of flexible conduit, the manifold and to provide storage for the nasal cannula. The container is formed as a belt or lightweight backpack. A pressure gauge monitors oxygen use by the patient.
Abstract:
An integrated dive suit includes at least one flexible polymeric pressure vessel connected with sections of flexible conduit to a manifold. The pressure vessel and sections of flexible conduit are encased in high strength fiber material. The pressure vessels are wrapped in high strength ballistic ribbon material. A weight system is integrated with the pressure vessels. The manifold provides connections for a high pressure regulator and an air fill source. A high pressure hose is connected to the high pressure regulator, a low pressure regulator is connected to the low pressure hose and a mouthpiece connected to the low pressure regulator. A hydrodynamic pressure vessel container is integrally attached to the dive suit. A two part, balanced flexible buoyancy control vest, flexible weight pellet containers and a wireless pressure gauge are integrated with the dive suit. A concentrator is used to pressurize a flexible pressure vessel for charging the vessels in the dive suit.
Abstract:
A flexible pressure vessel is constructed from at least one pair of upper and mating lower dome shaped cell portions. The dome portions are molded from sheets of resilient material and joined together by radio frequency welding or high-strength adhesives. Upper and lower passageway portions extend outwardly from each cell portion to the surrounding sheet material. When the cell portions are joined the passageway portions are joined to form a passageway for connection to a valve or another cell. Upper and lower rings surround the upper and lower cell portions to provide reinforcement for the cells. First and second blankets of heavy-duty fiber reinforced material are attached over the upper and lower cell portions and stitched in place with heavy-duty stitching extending through the resilient material surrounding the cell portions. Cell shaped sponges impregnated with absorbent materials are encased in liquid and gas impermeable plastic tubing and inserted into the cells prior to joining of the cell portions. Heat-reflecting plastic film or metal foil is inserted between blankets and the cell portions. The heavy duty stitching is high-pressure loop and lock braiding. The passageway has a cross-section of between 0.050 and 0.100 inches. An apparatus and method are described for constructing the flexible pressure vessel.
Abstract:
A utility belt includes a gas storage vessel for providing a portable and ambulatory supply of oxygen for the person wearing the belt or a person being attended to by the person wearing the belt. In particular, the utility belt provides a portable supply of pressurized gas while it is suspended from the body of a user, with a plurality of item holders, such as implement holsters and utility pouches, suspended from the utility belt. The supply of pressurized gas is provided by a gas storage vessel carried on the utility belt. The gas storage vessel is formed from a plurality of polymeric hollow chamber having either an ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The gas storage vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes an outlet valve/regulator attached to the gas storage vessel for controlling fluid flow into and out of the gas storage vessel and a gas delivery system for delivering gas from the gas storage vessel to a user in a breathable manner.
Abstract:
A wearable belt includes two or more pressure packs, each including a pressure vessel for storing therein a fluid under pressure for providing a portable, and ambulatory, source of the compressed fluid. The pressure vessel is formed from a plurality of hollow chamber having either en ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes a fluid transfer control system attached to the pressure vessel for controlling fluid flow into and out of the pressure vessel and a gas delivery mechanism for delivering gas from the pressure vessel to a user in a breathable manner. The pressure vessel is incorporated into the belt as two or more interconnected packs. Each pack comprises a plurality of interconnected chambers encased in a relatively rigid padded foam housing. A connecting conduit between adjacent packs is disposed within a flexible joint that can be bent or twisted, and belt straps are connected to the endmost pack housings. The belt straps include mating halves of a buckle, or other connecting feature, so that the belt can be secured around the torso of a person. The flexible joint located between adjacent relatively rigid packs permits the overall belt to conform to the body of the wearer, thereby increasing comfort and reducing the bulk created by the belt.
Abstract:
A container system for pressurized fluids that includes a plurality of generally ellipsoidal chambers connected by a tubular core. The tubular core is formed along its length with a plurality of apertures each of which is positioned within one of the chambers. The apertures are of comparatively small size so as to be able to control the rate of evacuation of pressurized fluid should a chamber be ruptured.
Abstract:
A container system for pressurized fluids that includes a plurality of generally ellipsoidal chambers connected by a tubular core. The tubular core is formed along its length with a plurality of apertures each of which is positioned within one of the chambers. The apertures are of comparatively small size so as to be able to control the rate of evacuation of pressurized fluid should a chamber be ruptured.
Abstract:
In a back pack pressurized gas assembly, the combination comprising a structure including a back panel sized to be carried on the back of a human carrier; looping pipe coils carried by the structure in overlying relation to the back panel, and in closely coiled configuration in a plane parallel to the back panel whereby the coil means and back panel structure may be conformed closely to the human back; the looping coil means having pressurized gas outlet structure associated therewith, whereby the looping pipe coils may receive pressurized gas for transport and use by the human.