Abstract:
An apparatus and method for flexibly suspending a sensing mechanism between a pair of cover plates, including a sensing mechanism formed in a crystalline silicon substrate; a pair of cover plates formed in crystalline silicon substrates; a first plurality of complementary interfaces in fixed relation between the sensing mechanism and a first one of the cover plates; and a second plurality of complementary interfaces flexibly suspended between the sensing mechanism and a second one of the cover plates with one or more of the flexibly suspended interfaces being a complementary male and female interface.
Abstract:
A mechanical resonator having an electrical charge buried and substantially permanently trapped in a layer of insulating material grown or otherwise formed on either or both of the electrode and the vibratory beam, whereby the trapped electrical charge generates electrostatic forces between the beams and the electrodes of the opposing plates of the resultant capacitor.
Abstract:
A method for designing a sensor using a dual double-ended tuning forks which provides composite cancellation of second-order non-linearity terms.
Abstract:
Pressure-compensated transducers and accelerometers, and force-sensing and acceleration-sensing methods are described. In a preferred embodiment, regression techniques are utilized in the context of a vibrating beam force transducer to provide a measure of acceleration which is both temperature-compensated and pressure-compensated.
Abstract:
A pendulous accelerometer wherein the active reaction mass is pendulously mounted to a fixed support structure and includes sensor cover or covers in the total active reaction mass.
Abstract:
A force rebalance accelerometer includes a magnetic assembly designed for improved scale factor performance and producibility. The magnetic assembly excitation ring includes slots. The slots are defined by an inner edge of the upper surface of the excitation ring and are separated by an upper surface portion or tongue intermediate the slots which extends away from the outer edge of the upper surface and toward a magnet received within the interior portion of the excitation ring.
Abstract:
A force rebalance accelerometer includes a proof mass suspended by one or more flexures between stationary mounted upper and lower excitation rings. Pick-off capacitance plates formed on opposing sides of the proof mass form capacitance elements whose capacitance varies in response to displacement of the proof mass to provide a displacement signal. The displacement signal is applied to one or more electromagnets, used to force the proof mass back to a null or at-rest position. The drive current applied to the electromagnets thus represents the force or acceleration applied to the accelerometer. The electromagnets include a magnet and a pole piece which forms a magnetic return path. In order to relieve stresses due to thermal expansion, the magnet is spaced apart from the pole piece to enable the bonding area to be constrained to a minimum which, in turn, reduces the overall stress on the accelerometer. In particular, a bead of relatively noncompliant epoxy is used for bonding the excitation ring and pole piece to the magnet. In order to further reduce thermal stresses, a ring of relatively compliant epoxy is disposed concentric to the noncompliant epoxy.
Abstract:
A force rebalance accelerometer includes a proof mass suspended by one or more flexures between stationary mounted upper and lower excitation rings. Pick-off capacitance plates formed on opposing sides of the proof mass are used to form upper and lower capacitance elements whose capacitance varies in response to displacement of the proof mass to provide a displacement signal. The displacement signal is applied to one or more electromagnets which are used to force the proof mass back to a null or at-rest position. The drive current applied to the electromagnets thus represents the force or acceleration applied to the accelerometer. The electromagnets include a magnet, rigidly secured to an excitation ring which forms a magnetic return path. A flux control groove is formed in the excitation ring to reduce leakage flux and flux concentration which would otherwise result in the magnetic return path at the magnet interface. By relieving the stress and leakage flux at the magnet interface, the accelerometer in accordance with the present invention will provide relatively stable output signals and not be particularly sensitive to temperature or environmental variations while providing relatively stable thermal hysteresis and drift performance.
Abstract:
A combined transducer that measures force or displacement and temperature utilizes a pair of vibrating tines to provide a simultaneous output representative of temperature and force or displacement whereby the sum or average of the vibrating frequencies of the two tines is representative of temperature and the difference is representative of force or displacement.
Abstract:
Prior detection circuits for measuring capacitance differences have commonly included error source, such as P-N junctions, in the DC signal path. The present invention provides an improved detection circuit for measuring the capacitance difference between first (C.sub.1) and second (C.sub.2) capacitive elements. The detection circuit comprises a first capacitor (C.sub.3) serially connected to the first capacitive element at a first common node (36) to form a first series circuit, and a second capacitor (C.sub.4) serially connected to the second capacitive element at a second common node (38) to form a second series circuit. The detection circuit also includes switch a circuit (32) connected between the common nodes and a reference potential, a driver (30) for applying a drive signal across each series circuit, a line for activating the switch circuit (48) and a difference detector (34) for measuring the voltage difference between the common nodes. The switch circuit has a first state in which the common nodes are connected to the reference potential and a second state in which the common nodes are isolated from the reference potential and from one another. The drive signal comprises a series of first voltage transitions (104, 106) operative to vary the total voltage drop across each series circuit. The line for activating the switch circuit changes the switch circuit from the first state to the second state at or prior to each first voltage transition. Therefore after each first voltage transition, the difference between the voltages of the first and second common nodes is a measure of the difference between the capacitances of the first and second capacitive elements. A similar technique may be applied to the measurement of the capacitance of a single capacitor.