Abstract:
A pendulous accelerometer wherein the active reaction mass is pendulously mounted external to a fixed support structure and may include sensor cover or covers in the total active reaction mass.
Abstract:
A transducer assembly includes first and second stators which are axially aligned with, and bear upon opposite sides of a proof mass. The stators and proof mass are clamped together by means of a sleeve having a side portion with spaced apart upper and lower flanges extending therefrom. The flanges bear against receiving surfaces on the stators with the sleeve under elastic deformation such that a compression force tending to reduce the spacing between the flanges is transmitted to the stators and proof mass as a controlled compressive axial preload.
Abstract:
A plurality of ribbon suspenders affix a device to a support structure. Each ribbon suspender is defined by a thickness and a width that is greater than the thickness, and has a first connection portion affixed to the support structure, a second connection portion affixed to the device, and a support portion between the first and second connection portions. The support portion is elastic and flexes to accommodate thermal expansion and contraction of the support structure. A first bond affixes the first connection portion to the support structure and a second bond affixes the second connection portion to the device.
Abstract:
An apparatus and method for flexibly suspending a sensing mechanism between a pair of cover plates, including a sensing mechanism formed in a crystalline silicon substrate; a pair of cover plates formed in crystalline silicon substrates; a first plurality of complementary interfaces in fixed relation between the sensing mechanism and a first one of the cover plates; and a second plurality of complementary interfaces flexibly suspended between the sensing mechanism and a second one of the cover plates with one or more of the flexibly suspended interfaces being a complementary male and female interface.
Abstract:
A pendulous accelerometer wherein the active reaction mass is pendulously mounted external to a fixed support structure and may include sensor cover of covers in the total active reaction mass.
Abstract:
A method and apparatus for enclosing a sensing device, such as an accelerometer, for reducing outside forces and strains on the sensing device. The cover includes two parts that bond to each other thereby forming a clamshell-type cover. The sensing device can float within the cover, is bonded to bonding points on one of the cover parts or is held in place by a pressure fit of the two cover parts on the sensing device.
Abstract:
A force rebalance accelerometer includes a proof mass suspended by one or more flexures between stationary mounted upper and lower excitation rings. Pick-off capacitance plates formed on opposing sides of the proof mass form capacitance elements whose capacitance varies in response to displacement of the proof mass to provide a displacement signal. The displacement signal is applied to one or more electromagnets, used to force the proof mass back to a null or at-rest position. The drive current applied to the electromagnets thus represents the force or acceleration applied to the accelerometer. The electromagnets include a magnet and a pole piece which forms a magnetic return path. In order to relieve stresses due to thermal expansion, the magnet is spaced apart from the pole piece to enable the bonding area to be constrained to a minimum which, in turn, reduces the overall stress on the accelerometer. In particular, a bead of relatively noncompliant epoxy is used for bonding the excitation ring and pole piece to the magnet. In order to further reduce thermal stresses, a ring of relatively compliant epoxy is disposed concentric to the noncompliant epoxy.
Abstract:
A plurality of ribbon suspenders affix a device to a support structure. Each ribbon suspender is defined by a thickness and a width that is greater than the thickness, and has a first connection portion affixed to the support structure, a second connection portion affixed to the device, and a support portion between the first and second connection portions. The support portion is elastic and flexes to accommodate thermal expansion and contraction of the support structure. A first bond affixes the first connection portion to the support structure and a second bond affixes the second connection portion to the device.
Abstract:
An apparatus and method for flexibly suspending a sensing mechanism between a pair of cover plates, including a sensing mechanism formed in a crystalline silicon substrate; a pair of cover plates formed in crystalline silicon substrates; a first plurality of complementary interfaces in fixed relation between the sensing mechanism and a first one of the cover plates; and a second plurality of complementary interfaces flexibly suspended between the sensing mechanism and a second one of the cover plates with one or more of the flexibly suspended interfaces being a complementary male and female interface.
Abstract:
A net zero isolator having an elongated linear displacement member; and first and second counter rotation members arranged crosswise to the linear displacement member at either end thereof, each of the first and second counter rotation members including a mounting portion spaced apart from an isolated portion on respective first and second sides of the elongated linear displacement member. The elongated linear displacement member and the first and second counter rotation members are structured such that a displacement of the mounting portions along the linear displacement member is balanced by a displacement of the isolated pads. The net zero isolator acts through each of the first and second counter rotation members to generate displacements of the isolated portions that cancel a linear displacement of the mounting portions.