Abstract:
A method for configuring the optical transfer of a mask pattern onto a substrate using a lithographic apparatus is presented. In an embodiment of the invention, the method includes calculating a size of a printed sidelobe to be generated as a result of optical transfer of the mask pattern onto the substrate; and determining a plurality of lithographic parameters for optical transfer of the mask pattern onto the substrate that yields an optimization of a high latitude for the mask pattern and a small printed sidelobe size.
Abstract:
An apparatus for suitable for obtaining an image of a dental structure has an illuminator member placed proximate the area to be imaged. The illuminator member has a support structure (30) for retaining the illuminator member in position proximate the area to be imaged. A reference (22) is coupled to the support structure (30) of the illuminator member and disposed within the area to be imaged. At least one light source (24) is coupled to the support structure (30) of the illuminator member for directing imaging illumination toward the area to be imaged. A camera (12) records an image from within the area to be imaged using the imaging illumination from the illuminator member, wherein the image comprises the reference (22).
Abstract:
A characteristic of edible oil may be evaluated using a spectrometer. For example, optical reflectance data may be obtained from edible oil in situ in a frying apparatus housing the edible oil, the reflectance data corresponding to a specified range of infra-red wavelengths. A model profile corresponding to the characteristic being assessed may be obtained, such as from a repository housing a secured library of such profiles. The model profile may define a regression vector for use in transforming the reflectance data to generate a value corresponding to the characteristic being assessed. A criterion may be applied to the value to establish a simplified representation of the characteristic for presentation to a user for assessment of oil quality.
Abstract:
An attachment structure system is disclosed for attaching a damper to a vehicle. The attachment structure system can include a stiffener body that has a central portion connected to a damper. The stiffener body can be connected to both the vehicle's frame and a vehicle body portion, such as the wheel housing, to reduce noise, vibration, and harshness from being transmitted to the driver of the vehicle, and to provide other structural and ride characteristic benefits to the vehicle.
Abstract:
An attachment structure system is disclosed for attaching a damper to a vehicle. The attachment structure system can include a stiffener body that has a central portion connected to a damper. The stiffener body can be connected to both the vehicle's frame and a vehicle body portion, such as the wheel housing, to reduce noise, vibration, and harshness from being transmitted to the driver of the vehicle, and to provide other structural and ride characteristic benefits to the vehicle.
Abstract:
A method for configuring the optical transfer of a mask pattern onto a substrate using a lithographic apparatus is presented. In an embodiment of the invention, the method includes calculating a size of a printed sidelobe to be generated as a result of optical transfer of the mask pattern onto the substrate; and determining a plurality of lithographic parameters for optical transfer of the mask pattern onto the substrate that yields an optimization of a high latitude for the mask pattern and a small printed sidelobe size.
Abstract:
A rectangular or bar-shaped, on-axis illumination mask with radiation polarized parallel to the length of the bar provides improved DOF and exposure latitude with less lens heating as compared to a circular monopole with equivalent σ.
Abstract:
A method of configuring a transfer of an image of a pattern onto a substrate with a lithographic apparatus is presented. The method includes selecting a plurality of parameters including a pupil filter parameter; calculating an image of the pattern for the selected parameters; calculating a metric that represents a variation of an attribute of the calculated image over a process range; and adjusting the plurality of parameters based on a result of the metric.
Abstract:
A lithographic method to enhance image resolution in a lithographic cluster using multiple projections and a lithographic cluster used to project multiple patterns to form images that are combined to form an image having enhanced resolution.
Abstract:
A method of configuring a transfer of an image of a patterning device pattern onto a substrate with a lithographic apparatus. The method includes determining an intermediate illumination arrangement parameter and an intermediate patterning device parameter by varying an initial illumination arrangement parameter and an initial patterning device parameter using a calibrated model until the calculated image of the pattern printed on the substrate is within predetermined specification; calculating a metric that represents a lithographic response of the printed pattern over a process range, where the pattern would be imaged with the intermediate illumination arrangement and patterning device parameters over the process range, and depending on a result of the metric, adjusting the initial patterning device and illumination arrangement parameters.