Abstract:
Provided are a real-time PCR monitoring apparatus and method. The real-time PCR monitoring apparatus includes a microchip-type PCR tube that has a PCR solution-containing PCR chamber, a micro-heater that applies heat to the PCR chamber of the PCR tube, a detection unit that detects a PCR product signal based on the amount of a PCR product of the PCR solution, a plurality of modules, each of which includes a cooling fan for lowering the inside air temperature and a control unit for adjusting the temperature of the PCR chamber of the PCR tube by controlling the micro-heater and the cooling fan, and receives the PCR tube, the micro-heater, and the detection unit, a base instrument that includes a power supply unit electrically connected to the modules for power supply and a data communication unit electrically connected to the modules for data communication with the control unit of each of the modules, and a display unit that displays data received from the data communication unit, wherein the control unit of each of the modules independently controls at least one of both the detection unit and the temperature of the PCR chamber of the PCR tube received in each of the modules. Therefore, co-amplification of different samples at different temperature conditions can be carried out and monitored in real time.
Abstract:
A dielectrophoresis (DEP) apparatus including a concentration gradient generating unit, a method of separating a target material in a sample solution using the DEP apparatus, and a method of screening the optimum condition for separating a target material are provided.
Abstract:
A real time polymerase chain reaction (“PCR”) monitoring apparatus includes, a microchip-type PCR tube that has a PCR solution-containing PCR chamber, a micro-heater, a detection unit detecting a PCR product signal based on the PCR solution, a plurality of modules, each of which includes the abovementioned elements in addition to a cooling fan and a control unit controlling the micro-heater and the cooling fan to adjust the temperature of the PCR chamber, a base instrument that comprises a power supply unit connected to the modules and a data communication unit connected to the control unit of each of the modules, and a display unit displaying data from the data communication unit, wherein the control unit of each of the modules independently controls at least one of both the detection unit and the temperature of the PCR chamber of the PCR tube in each of the modules.
Abstract:
Provided are a polymerase chain reaction (PCR) module and a PCR system including the same. The PCR module includes: a detachable PCR chip including a PCR chamber unit in which a PCR solution is accommodated; a heater unit for heating the PCR solution in the PCR chip with a preset temperature; a detecting unit for detecting a PCR signal of the PCR solution; a PCR chip installation unit for mounting/detaching the PCR chip using a one-touch method, in which the heater unit is adhered to the PCR chip with a predetermined pressure when mounting the PCR chip and the heater unit is separated from the PCR chip when detaching the PCR chip; and a housing covering at least the heater unit and the detecting unit so that they are not exposed to the outside.
Abstract:
Provided is a method of purifying a target substance using silver nanoparticles. The method includes: mixing a sample containing molecules having a thiol group with the silver nanoparticles to obtain a complex of the molecules having the thiol group with the silver nanoparticles; and isolating and removing the complex from the mixture. By using the purification method, PCR amplifiable DNAs can be rapidly purified, and thus, the method can be very efficiently applied to lab-on-chip (LOC).
Abstract:
Provided is a microfluidic device including at least one inlet, at least one outlet, and a microchannel connecting the inlet and the outlet. The microfluidic device includes two or more electromagnets disposed on sidewalls of the microchannel and oriented in a predetermined direction with respect to the direction in which the microchannel extends.
Abstract:
Provided are an optical system for analyzing multi-channel samples which uses a mirror rotating at high speeds and an aspherical mirror, and a multi-channel sample analyzer employing the optical system. The optical system for analyzing multi-channel samples, includes a light source unit which emits light traveling along an optical axis; a semi-spheroid aspherical mirror disposed in rotational symmetry about the optical axis; and an inclined mirror which reflects the light exiting the light source unit to the semi-spheroid aspherical mirror, while rotating about the optical axis, wherein an opening is formed in the center of the semi-spheroid aspherical mirror such that the light exiting the light source unit enters the inclined mirror through the semi-spheroid aspherical mirror.
Abstract:
Provided are an optical detection apparatus which can measure multi-channel samples at high speed and various wavelengths using an optical detector and a multi-channel sample analyzer employing the same. The optical detection apparatus includes an optical detector; a filter wheel having at least two color filters connected to each other in the shape of a disk; a plurality of optical channels through which a plurality of beams of light enter the filter wheel; and a mirror unit including a plurality of mirrors for sequentially reflecting the plurality of beams of light transmitted through the filter wheel to the optical detector, wherein the mirror unit rotates together with the filter wheel.
Abstract:
Provided is a method for quantifying an initial concentration of a nucleic acid from a real-time nucleic acid amplification data. Nucleic acid (DNA or RNA) extracted from organism or virus is amplified using an enzyme. Then, the initial concentration of the nucleic acid is found by calculating the characteristic amplification cycle number or the characteristic amplification time at which the fluorescence intensity of the nucleic acid subtracted by the background fluorescence intensity of the nucleic acid has half of its maximum value, or the characteristic amplification cycle number or the characteristic amplification time at which the amplification efficiency has the maximum or the minimum value, or the prior-to-amplification fluorescence intensity of the nucleic acid subtracted by the background fluorescence intensity of the nucleic acid. Accordingly, the initial concentration of the nucleic acid can be calculated without differentiation or integration.
Abstract:
Provided are a PCR module and a multiple PCR system using the same. More particularly, provided are a PCR module with a combined PCR thermal cycler and PCR product detector, and a multiple PCR system using the same.