Abstract:
A microelectronic assembly includes a dielectric element having oppositely-facing first and second surfaces and one or more apertures extending between the surfaces, the dielectric element further having conductive elements thereon; a first microelectronic element having a rear surface and a front surface facing the first surface of the dielectric element, the first microelectronic element having a first edge and a plurality of contacts exposed at the front surface thereof; a second microelectronic element including having a rear surface and a front surface facing the rear surface of the first microelectronic element, a projecting portion of the front surface of the second microelectronic element extending beyond the first edge of the first microelectronic element, the projecting portion being spaced from the first surface of the dielectric element, the second microelectronic element having a plurality of contacts exposed at the projecting portion of the front surface; leads extending from contacts of the microelectronic elements through the at least one aperture to at least some of the conductive elements; and a heat spreader thermally coupled to at least one of the first microelectronic element or the second microelectronic element.
Abstract:
A microelectronic assembly can include a substrate having first and second surfaces and an aperture extending therebetween, the substrate having terminals. The assembly can also include a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element and projecting beyond an edge of the first microelectronic element, first and second leads electrically connecting contacts of the respective first and second microelectronic elements to the terminals, and third leads electrically interconnecting the contacts of the first and second microelectronic elements. The contacts of the first microelectronic element can be exposed at the front surface thereof adjacent the edge thereof. The contacts of the second microelectronic element can be disposed in a central region of the front surface thereof. The first, second, and third leads can have portions aligned with the aperture.
Abstract:
A microelectronic package includes a subassembly including a first substrate and first and second microelectronic elements having contact-bearing faces facing towards oppositely-facing first and second surfaces of the first substrate and each having contacts electrically connected with the first substrate. The contact-bearing faces of the first and second microelectronic elements at least partially overlie one another. Leads electrically connect the subassembly with a second substrate, at least portions of the leads being aligned with an aperture in the second substrate. The leads can include wire bonds extending through an aperture in the first substrate and joined to contacts of the first microelectronic element aligned with the first substrate aperture. In one example, the subassembly can be electrically connected with the second substrate using electrically conductive spacer elements.
Abstract:
A microelectronic assembly is disclosed that is capable of achieving a desired impedance for raised conductive elements. The microelectronic assembly may include an interconnection element, a surface conductive element, a microelectronic device, a plurality of raised conductive elements, and a bond element. The microelectronic device may overlie the dielectric element and at least one surface conductive element attached to the front surface. The plurality of raised conductive elements may connect the device contacts with the element contacts. The raised conductive elements may have substantial portions spaced a first height above and extending at least generally parallel to at least one surface conductive element, such that a desired impedance may be achieved for the raised conductive elements. A bond element may electrically connect at least one surface conductive element with at least one reference contact that may be connectable to a source of reference potential.
Abstract:
A microelectronic package includes a subassembly including a first substrate and first and second microelectronic elements having contact-bearing faces facing towards oppositely-facing first and second surfaces of the first substrate and each having contacts electrically connected with the first substrate. The contact-bearing faces of the first and second microelectronic elements at least partially overlie one another. Leads electrically connect the subassembly with a second substrate, at least portions of the leads being aligned with an aperture in the second substrate. The leads can include wire bonds extending through an aperture in the first substrate and joined to contacts of the first microelectronic element aligned with the first substrate aperture. In one example, the subassembly can be electrically connected with the second substrate using electrically conductive spacer elements.
Abstract:
A microelectronic assembly includes a dielectric element that has oppositely-facing first and second surfaces and first and second apertures extending between the surfaces. The dielectric element further includes conductive elements. First and second microelectronic elements are stacked one on top of the another. The second microelectronic element has a plurality of contacts at a surface, which is spaced from the first surface of the dielectric element. Leads extend from contacts of the first and second microelectronic elements through respective apertures to at least some of the conductive elements. A heat spreader is thermally coupled to at least one of the first microelectronic element or the second microelectronic element.
Abstract:
A microelectronic package may have a plurality of terminals disposed at a face thereof which are configured for connection to at least one external component. e.g., a circuit panel. First and second microelectronic elements can be affixed with packaging structure therein. A first electrical connection can extend from a respective terminal of the package to a corresponding contact on the first microelectronic element, and a second electrical connection can extend from the respective terminal to a corresponding contact on the second microelectronic element, the first and second connections being configured such that a respective signal carried by the first and second connections in each group is subject to propagation delay of the same duration between the respective terminal and each of the corresponding contacts coupled thereto.
Abstract:
A microelectronic assembly can include a substrate having first and second surfaces and an aperture extending therebetween, the substrate having terminals. The assembly can also include a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element and projecting beyond an edge of the first microelectronic element, first and second leads electrically connecting contacts of the respective first and second microelectronic elements to the terminals, and third leads electrically interconnecting the contacts of the first and second microelectronic elements. The contacts of the first microelectronic element can be exposed at the front surface thereof adjacent the edge thereof. The contacts of the second microelectronic element can be disposed in a central region of the front surface thereof. The first, second, and third leads can have portions aligned with the aperture.
Abstract:
A module can include a module card and first and second microelectronic elements having front surfaces facing a first surface of the module card. The module card can also have a second surface and a plurality of parallel exposed edge contacts adjacent an edge of at least one of the first and second surfaces for mating with corresponding contacts of a socket when the module is inserted in the socket. Each microelectronic element can be electrically connected to the module card. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto.
Abstract:
A module can include a module card and first and second microelectronic elements having front surfaces facing a first surface of the module card. The module card can also have a second surface and a plurality of parallel exposed edge contacts adjacent an edge of at least one of the first and second surfaces for mating with corresponding contacts of a socket when the module is inserted in the socket. Each microelectronic element can be electrically connected to the module card. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto.