Abstract:
A microelectronic assembly can include a substrate having first and second surfaces and an aperture extending therebetween, the substrate having terminals. The assembly can also include a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element and projecting beyond an edge of the first microelectronic element, first and second leads electrically connecting contacts of the respective first and second microelectronic elements to the terminals, and third leads electrically interconnecting the contacts of the first and second microelectronic elements. The contacts of the first microelectronic element can be exposed at the front surface thereof adjacent the edge thereof. The contacts of the second microelectronic element can be disposed in a central region of the front surface thereof. The first, second, and third leads can have portions aligned with the aperture.
Abstract:
A microelectronic assembly includes a dielectric element having first and second surfaces, first and second apertures extending between the first and second surfaces and defining a central region of the first surface between the first and second apertures, first and second microelectronic elements, and leads extending from contacts exposed at respective front surfaces of the first and second microelectronic elements to central terminals exposed at the central region. The front surface of the first microelectronic element can face the second surface of the dielectric element. The front surface of the second microelectronic element can face a rear surface of the first microelectronic element. The contacts of the second microelectronic element can project beyond an edge of the first microelectronic element. At least first and second ones of the leads can electrically interconnect a first central terminal of the central terminals with each of the first and second microelectronic elements.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses.
Abstract:
A module can include a module card and first and second microelectronic elements having front surfaces facing a first surface of the module card. The module card can also have a second surface and a plurality of parallel exposed edge contacts adjacent an edge of at least one of the first and second surfaces for mating with corresponding contacts of a socket when the module is inserted in the socket. Each microelectronic element can be electrically connected to the module card. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto.
Abstract:
A module can include a module card and first and second microelectronic elements having front surfaces facing a first surface of the module card. The module card can also have a second surface and a plurality of parallel exposed edge contacts adjacent an edge of at least one of the first and second surfaces for mating with corresponding contacts of a socket when the module is inserted in the socket. Each microelectronic element can be electrically connected to the module card. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto.
Abstract:
A microelectronic package may have a plurality of terminals disposed at a face thereof which are configured for connection to at least one external component. e.g., a circuit panel. First and second microelectronic elements can be affixed with packaging structure therein. A first electrical connection can extend from a respective terminal of the package to a corresponding contact on the first microelectronic element, and a second electrical connection can extend from the respective terminal to a corresponding contact on the second microelectronic element, the first and second connections being configured such that a respective signal carried by the first and second connections in each group is subject to propagation delay of the same duration between the respective terminal and each of the corresponding contacts coupled thereto.
Abstract:
A microelectronic assembly can include a substrate having first and second surfaces each extending in first and second transverse directions, a peripheral edge extending in the second direction, first and second openings extending between the first and second surfaces, and a peripheral region of the second surface extending between the peripheral edge and one of the openings. The assembly can also include a first microelectronic element having a front surface facing the first surface, a rear surface opposite therefrom, and an edge extending between the front and rear surfaces. The assembly can also include a second microelectronic element having a front surface facing the rear surface of the first microelectronic element and projecting beyond the edge of the first microelectronic element. The assembly can also include a plurality of terminals exposed at the second surface, at least one of the terminals being disposed at least partially within the peripheral region.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses.
Abstract:
A microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and a first aperture extending between the first and second surfaces, a first microelectronic element having a surface facing the first surface, a second microelectronic element having a front surface facing the first microelectronic element, signal leads connected to contacts of the second microelectronic element and extending through the first aperture to at least some of a plurality of electrically conductive elements on the substrate, and at least one power regulation component having active circuit elements therein disposed between the first surface of the substrate and the front surface of the second microelectronic element. The first microelectronic element can have another surface remote from the surface of the first microelectronic element, and an edge extending between the surfaces thereof. The contacts of the second microelectronic element can project beyond the edge of the first microelectronic element.
Abstract:
A method is disclosed of fabricating a microelectronic package comprising a substrate overlying the front face of a microelectronic element. A plurality of metal bumps project from conductive elements of the substrate towards the microelectronic element, the metal bumps having first ends extending from the conductive elements, second ends remote from the conductive elements, and lateral surfaces extending between the first and second ends. The metal bumps can be wire bonds having first and second ends attached to a same conductive pad of the substrate. A conductive matrix material contacts at least portions of the lateral surfaces of respective ones of the metal bumps and joins the metal bumps with contacts of the microelectronic element.