Abstract:
To calculate information on a relative distance or positional relationship between an interface section and an object by detecting an electromagnetic wave transmitted through the interface section, and using the electromagnetic wave from the object to detect a relative position of the object with respective to the interface section. Information on the relative spatial position of an object 101 with respect to an interface section 102 that has an arbitrary shape and deals with transmission of information or signal from one side to the other side of the interface section 102 is detected with a spatial position detection method. An electromagnetic wave 106 radiated from the object 101 and transmitted through the interface section 102 is detected by an electromagnetic wave detection section 103, and based on the detection result, information on spatial position coordinates of the object 101 is calculated by a position calculation section 104.
Abstract:
A device includes a multiple quantum well with potential barriers and quantum wells, and an electric field element for applying an electric field thereto. The multiple quantum well includes at least two regions A and a region B disposed therebetween. The region A includes a plurality of energy levels, and a carrier is transported from a specific energy level i to a specific energy level f in the region A through one of the potential barriers by photon-assisted tunneling. The region B includes a plurality of energy levels, and an energy relaxation is performed with a relaxation time shorter than a transit time of the carrier in the region A from a specific energy level e to a specific energy level g in the region B. When an electric field is applied, electric current flows through the multiple quantum well and light is emitted or absorbed in the region A.
Abstract:
A surface optical apparatus that includes a surface optical device with p-side and n-side electrodes, such as a surface emitting laser, a first substrate for supporting the surface optical device directly or through an elastic supporter formed of one or plural layers, and a first electrode wiring of at least a wire formed on the first substrate and electrically connected to one of the electrodes. A current is injected into or a voltage is applied across the surface optical device through the first electrode wiring and the p-side and n-side electrodes. A photodetector for detecting light from the surface optical device may also be arranged in the vicinity of the optical device.
Abstract:
A driving method of the present invention drives a semiconductor laser which is provided with at least first and second electrodes through each of which current is injected into the semiconductor laser. Varying current is injected through the first electrode when the frequency of the varying current is in a high frequency band. Varying current is injected through the first electrode while phase-shifted current, whose phase is shifted relative to the varying current, is injected through the second electrode, when the frequency of the varying current is in a low frequency band which is lower than the frequency of the high frequency band. Feedback-control may be performed for controlling a ratio between amplitudes of the modulation current and the phase-shifted current based on a light output from the semiconductor laser. The varying current includes at least modulation current modulated according to a predetermined signal or negative feedback current produced by an electric signal obtained by detecting fluctuation of oscillation wavelength of a light output from the semiconductor laser. Thus, an optical signal radiated from the laser can be desirably stabilized over a wide frequency band range.
Abstract:
This invention discloses the following. Two modulation currents are injected into different electrodes of a semiconductor laser having a plurality of electrodes. The relationship between the phases of the two modulation currents is so adjusted that an output waveform is not distorted especially when a modulation frequency is low. Polarization modulation is applied as the modulation form.
Abstract:
In a semiconductor laser apparatus, a waveguide has a buried heterostructure. The confinement effect of light to the waveguide having the buried heterostructure is controlled to control laser oscillation itself. Upon execution of intensity modulation, an oscillation/non-oscillation state is selected by controlling the confinement effect of light, and upon execution of polarized wave modulation, TE or TM mode oscillation is selected by controlling the confinement effect of light.
Abstract:
An oscillation polarization selective semiconductor laser that switches oscillation polarization modes between two different polarization modes includes a laser structure on a substrate. An active layer of the laser structure includes plural sets of quantum wells and barriers. The structure of at least one set of quantum wells and the barriers is different from the other sets so that the gain spectra generated in the active layer for induced mutually perpendicular propagation modes are selectively controlled by controlling the carrier density injected into the active layer. The oscillation polarization selective semiconductor laser may be used as a light source in optical communication systems.
Abstract:
In a light source apparatus, the polarization mode of oscillation light from a semiconductor laser is switchable between two different polarization modes when a modulation current is injected into a portion of a light waveguide of the semiconductor laser. Light in one polarization mode and light in the other polarization mode are separately obtained from the oscillation light from the semiconductor laser. At least the light in one of the two different polarization modes is converted to an electric signal. Current injected into the semiconductor laser is controlled based on the electric signal such that a modulation state of light from the semiconductor laser is stabilized. The light in the other polarization mode, or light in one polarization mode emitted from the other emission side of the semiconductor laser may be used for optical transmission.
Abstract:
A terahertz-wave element includes a waveguide (2, 4, 5) that includes an electro-optic crystal and allows light to propagate therethrough, and a coupling member (7) that causes a terahertz wave to enter the waveguide (2, 4, 5). The propagation state of the light propagating through the waveguide (2, 4, 5) changes as the terahertz wave enters the waveguide (2, 4, 5) via the coupling member (7).
Abstract:
In an examining apparatus or method, values of thickness and characteristic of an object, or distributions thereof can be simultaneously acquired. The examining apparatus includes a portion 9 for irradiating an object 2 with radiation, a portion 10 for detecting the radiation from the object, an acquiring portion 26, a storing portion 21 and a calculating portion 20. The acquiring portion acquires transmission time associated with detection time of radiation, and amplitude of the radiation. The storing portion beforehand stores relationship data between the transmission time and amplitude, and representative values of characteristic of the object. The calculating portion obtains values of thickness and characteristic of the object based on the transmission time, amplitude and relationship data.