Abstract:
A semiconductor integrated device includes a substrate having an active region defined thereon, a plurality of active fins positioned in the active region, and a plurality of first protecting fins surrounding the active region. Each of the plurality of active fins extends along a first direction and includes a first length along the first direction. The plurality of first protecting fins extend along the first direction. One of the plurality of first protecting fins immediately adjacent to the active region has a second length along the first direction, and the second length is longer than the first length.
Abstract:
The present invention provides a semiconductor structure, including a substrate, having a dielectric layer disposed thereon, a first device region and a second device region defined thereon, at least one first trench disposed in the substrate within the first device region, at least one second trench and at least one third trench disposed in the substrate within the second device region, a work function layer, disposed in the second trench and the third trench, wherein the work function layer partially covers the sidewall of the second trench, and entirely covers the sidewall of the third trench, and a first material layer, disposed in the second trench and the third trench, wherein the first material layer covers the work function layer disposed on partial sidewall of the second trench, and entirely covers the work function layer disposed on the sidewall of the third trench.
Abstract:
A static random access memory unit cell layout structure is disclosed, in which a slot contact is disposed on one active area and another one across from the one. A static random access memory unit cell structure and a method of fabricating the same are also disclosed, in which, a slot contact is disposed on drains of a pull-up transistor and a pull-down transistor, and a metal-zero interconnect is disposed on the slot contact and a gate line of another pull-up transistor. Accordingly, there is not an intersection of vertical and horizontal metal-zero interconnects, and there is no place suffering from twice etching. Leakage junction due to stitch recess can be avoided.
Abstract:
A semiconductor integrated device includes a substrate having an active region defined thereon, a plurality of active fins positioned in the active region, and a plurality of first protecting fins surrounding the active region. Each of the plurality of active fins extends along a first direction and includes a first length along the first direction. The plurality of first protecting fins extend along the first direction. One of the plurality of first protecting fins immediately adjacent to the active region has a second length along the first direction, and the second length is longer than the first length.
Abstract:
A semiconductor structure includes a metal gate, a second dielectric layer and a contact plug. The metal gate is located on a substrate and in a first dielectric layer, wherein the metal gate includes a work function metal layer having a U-shaped cross-sectional profile and a low resistivity material located on the work function metal layer. The second dielectric layer is located on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in a third dielectric layer, thereby a capacitor is formed. Moreover, the present invention also provides a semiconductor process forming said semiconductor structure.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
A method for fabricating a metal-oxide semiconductor (MOS) transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a silicon layer on the semiconductor substrate; performing a first photo-etching process on the silicon layer for forming a gate pattern; forming an epitaxial layer in the semiconductor substrate adjacent to two sides of the gate pattern; and performing a second photo-etching process on the gate pattern to form a slot in the gate pattern while using the gate pattern to physically separate the gate pattern into two gates.
Abstract:
A fabrication method of a semiconductor device includes the following steps. First, sacrificial patterns are formed on a substrate and a space is formed on the sidewalls of each sacrificial pattern. Then, the sacrificial patterns are removed and patterns of the spacers are transferred into the substrate to form a fin structure. The fin structure includes a horizontal fin structure extending along a first direction and a vertical fin structure extending along a second direction. Subsequently, a gate structure, source/drain structures, and an electrical connecting structure are formed sequentially on the substrate. The gate structure overlaps portions of the horizontal fin structure. The source/drain structures are respectively on each side of the gate structure. The electrical connecting structure directly covers the horizontal fin structure and the vertical fin structure.
Abstract:
A semiconductor integrated circuit includes a substrate, a multi-gate transistor device formed on the substrate, and an n-well resistor formed in the substrate. The substrate includes a plurality of first isolation structures and at least a second isolation structure formed therein. A depth of the first isolation structures is smaller than a depth of the second isolation structure. The multi-gate transistor device includes a plurality of fin structures, and the fin structures are parallel with each other and spaced apart from each other by the first isolation structures. The n-well resistor includes at least one first isolation structure. The n-well resistor and the multi-gate transistor device are electrically isolated from each other by the second isolation structure.
Abstract:
A method for fabricating fin-shaped field-effect transistor (FinFET) is disclosed. The method includes the steps of: providing a substrate; forming a fin-shaped structure in the substrate; forming a shallow trench isolation (STI) on the substrate and around the bottom portion of the fin-shaped structure; forming a first gate structure on the STI and the fin-shaped structure; and removing a portion of the STI for exposing the sidewalls of the STI underneath the first gate structure.