Abstract:
A aerodynamic particle separator for an Additive Manufacturing System (AMS) has an air supply device to entrain a mixed powder in an airstream flowing through a housing. Each particle in the mixed powder is imparted with a momentum dependent upon the particle weight and size. Utilizing this momentum characteristic, the heavier particles are capable of crossing streamlines of the airstream at a bend portion of the housing and the lighter particles generally stay within the streamlines. Utilizing this dynamic characteristic, the particles of specific weight ranges are collected through respective offtake holes in the housing and controllably fed to a spreader of the AMS.
Abstract:
A rotating tool system attachment on the spindle of a computer numerical control (“CNC”) machine includes a rotating assembly mounted on a static assembly. The rotating assembly provides a continuous supply of a wire material for deposition on a substrate during an additive manufacturing process. The rotating assembly includes a material supply housing a feedstock of wire mounted on a rotating spindle and a wire feeder configured to draw the wire from the wire supply and provide the wire for application during the additive manufacturing process. The tool system can be attached to the spindle of CNC machine to provide additive manufacturing capabilities to the CNC machine.
Abstract:
A method of forming an object includes installing multiple foil drums within a processing chamber of an ultrasonic consolidation system. The multiple foil drums each include different materials than the other foil drums. The multiple foil drums are positioned so that one of the foils is selected to be placed on top of the build platform. The selected foil is welded onto the build platform or onto a previously processed layer. A portion of the welded foil is then cut. The multiple foil drums are retracted away from the build platform. The portion of the welded foil that was just cut is then consolidated to the object. The build platform is incrementally lowered before the process is repeated to form the next layer of the object.
Abstract:
A process is provided for additively manufacturing at least one part. The processing includes depositing a substantially uniform layer of material over at least a portion of a support surface using a belt that contacts the material. The process also includes solidifying at least a portion of the layer of material using a solidification device to foam at least a portion of the part.
Abstract:
A powder bed deposition apparatus comprises a movable build plate, a powder delivery system, an energy beam apparatus capable of selectively steering at least one focused energy beam over successive quantities of metal powder, a non-metallic barrier layer, and an anchor removably secured to the build plate. The non-metallic barrier layer is disposed over a metal upper surface of the build plate. The anchor has a metal bonding surface flush with the non-metallic barrier layer, the non-metallic barrier layer and the anchor defining a removable build assembly with a powder bed working surface.
Abstract:
A ceramic turbine component is formed by a process including mixing a ceramic powder with a metal binder powder mixture. The powder mixture is then formed into a turbine component that is subsequently densified by partial transient liquid phase sintering. In an embodiment, the turbine component may be formed by an additive manufacturing process such as selective laser sintering.
Abstract:
An additive manufacturing system includes an ultrasonic inspection system integrated in such a way as to minimize time needed for an inspection process. The inspection system may have an ultrasonic phased array integrated into a build table for detecting defects in each successive slice of a workpiece and such that each slice may be re-melted if and when defects are detected.
Abstract:
A additive manufacturing system includes a containment housing operable to form a containment chamber with a low pressure operating atmosphere and an additive manufacturing build housing within said containment housing.
Abstract:
A rotating tool system attachment on the spindle of a computer numerical control (“CNC”) machine includes a rotating assembly mounted on a static assembly. The rotating assembly provides a continuous supply of a wire material for deposition on a substrate during an additive manufacturing process. The rotating assembly includes a material supply housing a feedstock of wire mounted on a rotating spindle and a wire feeder configured to draw the wire from the wire supply and provide the wire for application during the additive manufacturing process. The tool system can be attached to the spindle of CNC machine to provide additive manufacturing capabilities to the CNC machine.
Abstract:
A structure includes a first body section that has a wall that spans in a vertical direction. The wall has a relatively thin thickness with respect to a length and a width of the wall. A second body section is arranged next to, but spaced apart from, the first body section. A gusset connects the first body section and the second body section. The gusset extends obliquely from the wall of the first body section with respect to the vertical direction such that the gusset is self-supporting. The first body section has a geometry that corresponds to an end-use component exclusive of the gusset.