Abstract:
A converter for heterogeneous catalytic synthesis under pressure, consisting of an external shell in a single piece and inside this of at least a cartridge containing a catalyst arranged in one or more beds contained in catalyst-carrying baskets. An external wall of these baskets is provided with means that protrude from the closed bottom and are coupled, in order to be supported, with means protruding from the internal continuous face which extends substantially along the entire axial height of the converter and is the nearest to the internal wall of the baskets. An unflanged labyrinth seal is located between two centrally located heat exchangers contained within the converter.For reactions at high pressures, the wall holding the protruding support rings at the bottom of the baskets is a cartridge wall in a single piece that extends substantially along the whole shell and forms with this an airspace.For reactions at low pressures, the support rings of the basket bottoms protrude from the internal surface of the shell. At least one of the catalytic beds supported by the baskets or elementary cartridges is centrally crossed by an indirect heat exchanger.
Abstract:
Process for obtaining an optimal synthesis gas distribution in catalytic beds for heterogeneous reactions in reactors comprising a cylindrical pressure vessel with an internal cartridge containing a catalyst.
Abstract:
A converter for heterogeneous synthesis. The converter contains a variable number of internal cartridges, each having a non-perforated external wall which forms an interspace with a internal shell wall. The converter also has a corresponding variable number of catalytic beds, each having granular catalyst. The catalyst beds are contained in a vessel having a closed bottom, an open top, and two cylindrical concentric perforated walls. The perforated walls allow for adduction and extraction of reaction gases which flow axially and radially through the catalyst beds. Heat exchangers are orientated on the same axis with the annular catalyst beds and consist of tube-bundles within a shell. Reaction gas feed tubes extend through some of the heat exchanger tube bundles.
Abstract:
Disclosed is a reactor for heterogeneous catalytic reactions of gaseous reactants under pressure, comprising: a container having an inlet for introduction of gaseous reactants and an outlet for the efflux of products of the reactions; a cartridge having a cylindrically shaped wall placed within the container and communicating with the inlet and the outlet; at least two stationary-bed, catalyst-containing baskets supported within the cartridge, each of the baskets including an imperforate bottom section, a cylindrical outer perforated wall, a cylindrical inner concentric perforated wall and an annular opening defined by the inner and outer perforated walls in the upper end of each stationary-bed, catalyst-containing basket, the opening formed in a plane approximately perpendicular to the longitudinal axis of the inner and outer perforated walls, the bottom section and the inner and outer perforated walls cooperating with the cylindrically shaped cartridge wall to form a partially restrictive axial flow means, whereby a portion of the gaseous reactants enters or departs and passes through the annular opening in each of the stationary-bed, catalyst-containing baskets substantially in the axial direction and the remainder of the gaseous reactants enters and passes through the cylindrical outer perforated wall of each of the catalyst-containing baskets substantially in the radial direction.
Abstract:
Urea in powder, formed in the course of a prilling opration in which molten urea is delivered to a prilling tower adjacent its upper end for the formation of droplets which descend to the bottom of the prilling tower through a countercurrent stream of cooling air delivered to the prilling tower adjacent its lower end and which entrains that urea powder, is recovered by withdrawing the stream of air and urea powder from the upper end of the prilling tower and feeding it to an ejector connected with a collecting tank. Motive power is supplied to the ejector by feeding an aqueous liquid to it and that liquid transports the urea constituting the powder to a collecting tank from which the urea is recovered.
Abstract:
In a process for the production of urea from ammonia and carbon dioxide by feeding ammonia and carbon dioxide into a reactor, reacting the ammonia and carbon dioxide so as to produce an effluent aqueous solution of urea contaminated with ammonium carbamate, stripping the ammonium carbamate from the said solution in the presence of a stripping agent selected from ammonia and carbondioxide so as to produce an aqueous solution of urea substantially free from ammonium carbamate and a vapor phase of ammonia and carbon dioxide, and condensing ammonia and carbon dioxide to form a solution of carbamate for recycle into the reactor, and feeding ammonium carbamate to the reactor by entraining it in a stream of ammonia fed to the reactor through an ejector.
Abstract:
A process is described wherein prilled urea of low biuret content is prepared by crystallizing urea of low biuret content by melting from only 30 to 70 percent of the urea crystals through the application of heat thereto, and forming a heterogeneous mixture of the unmelted crystals in the melted urea. That mixture is then fed to conventional pelleting apparatus.
Abstract:
In a method of modernizing a heterogeneous exothermic synthesis reactor (1) of the type comprising an external shell (2), in which at least one catalytic bed (15, 16, 17) is supported, the catalytic bed (15, 16, 17) is connected to an external boiler (21), for generating high pressure steam, by means of a reacted gas outlet nozzle (4) and a conduit (29) extending in said nozzle (4) thereby forming an annular airspace (30). Advantageously, the airspace (30) defines an outlet flowpath of the gases cooled in the boiler (21) which avoids overheating of the nozzle (4).
Abstract:
Process for the industrial synthesis of urea, in which ammonia (NH3) and carbon dioxide (CO2) are reacted in at least one reaction space SR at high temperature and pressure and the unreacted materials are treated in a recovery section, said synthesis comprising: a) a reaction between highly pure reagents; and b) a reaction between less pure reagents substantially recycled from said recovery section, characterized by the fact that reaction stage A for high Yield majority synthesis (HEPC), between very pure reagents, operating at a higher pressure (Pmax) for example above 300 kg/cm2 abs and preferably at about 400 kg/cm2 abs, is followed by a flash stage F1 operating at pressures lower by at least 40% than said pressure (Pmax) preferably lower than 200 kg/cm2 abs, the gas effluent GF1 from the above-mentioned flash stage F1 being fed to reaction stage B for minority synthesis of less pure reagents operating at a pressure below 200 kg/cm2 abs, while the liquid effluent EL1 from the abovementioned flash stage, together with effluent EB from stage B of minority reaction operating in parallel with majority reaction stage A, feeds a recovery section RE consisting of two decomposition stages D1 and D2 operating in series: the first D1 being at a pressure lower than 100 kg/cm2 abs preferably at 50 kg/cm2 abs; the second D2 operating at a pressure lower than 50 kg/cm2 abs preferably at 20 kg/cm2 abs.
Abstract translation:用于工业合成尿素的方法,其中氨(NH 3)和二氧化碳(CO 2)在高温和高压下在至少一个反应空间SR中反应,未反应的物质在回收段中处理,所述合成包括: )高纯试剂之间的反应; 和b)基本上从所述回收部分再循环的较不纯的试剂之间的反应,其特征在于,在高纯度试剂之间的高收率多数合成(HEPC)的反应级A在较高压力(Pmax)下操作,例如高于300 kg / cm 2 abs,优选约400kg / cm2 abs,然后是闪蒸阶段F1,在低于所述压力(Pmax)至少40%的压力下操作,优选低于200kg / cm 2 abs,气体流出物GF1来自 将上述闪蒸级F1进料到反应级B,用于少量合成在低于200kg / cm2 abs的压力下操作的较不纯的试剂,同时来自上述闪蒸级的液体流出物EL1以及来自B级的流出物EB 少数反应与大多数反应阶段A并行操作,进料由两个分解阶段D1和D2串联运行的回收段RE:第一个D1的压力低于100kg / cm2 abs,优选在 50 kg / cm2 abs; 第二D2在低于50kg / cm2 abs的压力下操作,优选为20kg / cm 2 abs。
Abstract:
Reactors for the catalytic conversion of carbon monoxide into carbon dioxide are advantageously modified in situ from axial flow reactors into substantially radial flow reactors, and more particularly into axial-radial flow reactors. To this end at least an external cylindrical wall perforated for its whole length and an internal wall preferably perforated for most of its length are inserted inside the conventional reactor shell and cartridge.