Abstract:
A module and method for automatically scaling a multi-tier application, wherein each tier of the multi-tier application is supported by at least one virtual machine, selects one of reinforced learning and heuristic operation based on a policy to recommend a scaling action from a current state of the multi-tier application. If reinforced learning is selected, the reinforced learning is applied to select the scaling action from a plurality of possible actions for the multi-tier application in the current state. If heuristic operation is selected, the heuristic operation is applied to select the scaling action using a plurality of defined heuristics.
Abstract:
A system and method for autoscaling a multi-tier application, that has components executing on a plurality of tiers of a virtual data center, allocates resources to each of the plurality of tiers based on cost and performance. An application performance is determined, and a new application performance is estimated based at least partially on an application reservation and an application limit. An optimized utility of the application is calculated based on the cost to execute the application, the application reservation, and the application limit. A scaling factor for each tier is then determined to scale up or down a number of virtual machines operating in each of the tiers.
Abstract:
A system and method for autoscaling a multi-tier application, that has components executing on a plurality of tiers of a virtual data center, allocates resources to each of the plurality of tiers based on cost and performance. An application performance is determined, and a new application performance is estimated based at least partially on an application reservation and an application limit. An optimized utility of the application is calculated based on the cost to execute the application, the application reservation, and the application limit. A scaling factor for each tier is then determined to scale up or down a number of virtual machines operating in each of the tiers.
Abstract:
A system and method for performing an operational metric analysis for a virtual appliance uses application operational data from multiple instances of the virtual appliance. The application operational data is then used to generate an operational metric prediction for the virtual appliance.
Abstract:
A cloud management server and method for performing automatic placement of clients in a distributed computer system uses a list of compatible clusters to select an affinity cluster to place the clients associated with an affinity constraint. As part of the placement method, a cluster that cannot satisfy any anti-affinity constraint associated with the clients and the affinity constrain is removed from the list of compatible clusters. After the affinity cluster has been selected, at least one cluster in the distributed computer system is also selected to place clients associated with an anti-affinity constraint.
Abstract:
A system and method for autoscaling a multi-tier application, that has components executing on a plurality of tiers of a virtual data center, allocates resources to each of the plurality of tiers based on cost and performance. An application performance is determined, and a new application performance is estimated based at least partially on an application reservation and an application limit. An optimized utility of the application is calculated based on the cost to execute the application, the application reservation, and the application limit. A scaling factor for each tier is then determined to scale up or down a number of virtual machines operating in each of the tiers.
Abstract:
A cloud management server and method for performing automatic placement of clients in a distributed computer system uses a list of compatible clusters to select an affinity cluster to place the clients associated with an affinity constraint. As part of the placement method, a cluster that cannot satisfy any anti-affinity constraint associated with the clients and the affinity constrain is removed from the list of compatible clusters. After the affinity cluster has been selected, at least one cluster in the distributed computer system is also selected to place clients associated with an anti-affinity constraint.
Abstract:
A management system and method for remediating poor-performing clients running in a distributed computer system uses a machine learning technique to automatically detect one or more poor-performing clients among a plurality of clients running in the distributed computer based on at least performance data and resource usage data of the clients. An action is then initiated to mitigate the effects of the poor-performing clients.
Abstract:
A system and method for performing a hypothetical power management analysis on a distributed computer system uses chronologically consecutive snapshots of the distributed computer system. The snapshots are used to extract demands of clients running in the distributed computer system for a resource for different time intervals, which are then stitched together to produce a workload trace. The snapshots and the workload trace are used to construct modeling scenarios for the distributed computer system. The modeling scenarios are used to perform analyzes to simulate the operation of the distributed computer system during which the power management module is enabled to compute potential power savings.
Abstract:
A management system and method for remediating poor-performing clients running in a distributed computer system uses a machine learning technique to automatically detect one or more poor-performing clients among a plurality of clients running in the distributed computer based on at least performance data and resource usage data of the clients. An action is then initiated to mitigate the effects of the poor-performing clients.