Abstract:
A method and system for magnetic actuated mixing which use magnetic particles and electromagnetic field to facilitate the mixing. The method and system use magnetic particles and a generated electromagnetic field to facilitate the milling as well. The method and system can be used in any application that requires the preparation of small-sized particles at either the micro or nano scale, including for example, preparing toners, inks, wax, pigment dispersions and the like.
Abstract:
A method for preparing a latex or dispersion, the method comprising contacting at least one resin with an organic solvent to form a resin mixture; neutralizing the resin mixture with a neutralizing agent; and subjecting the resin mixture flow to steam flow in a continuous manner to form a dispersion. A method for forming toner, the method comprising: contacting a resin to an organic solvent and a neutralizing agent to form a resin mixture; subjecting the resin mixture flow to a steam flow in a continuous manner to form a dispersion; aggregating particles from a pre-toner mixture, the pre-toner mixture comprising the dispersion, an optional colorant, and an optional wax; and coalescing the aggregated particles to form toner particles. An apparatus that can perform the methods.
Abstract:
A process includes dissolving a styrene/acrylate resin in an organic solvent to form a first solution, dissolving at least one polyester resin in the first solution to form a second solution, neutralizing the second solution with a base to provide a neutralized solution, and adding a sufficient amount of water to the neutralized solution to form an emulsion. A latex particle includes a polyester resin and a styrene/acrylate resin dispersed within the latex particle, the surface of the latex particle is substantially the polyester resin. A toner includes a plurality of toner particles prepared from a latex, the particles of the latex including a polyester resin and a styrene/acrylate resin dispersed within each latex particle, the surface of each latex particle is substantially the polyester resin.
Abstract:
A process includes dissolving a polymer in an organic solvent to form a polymer solution and forming a latex from the polymer solution by contacting the polymer solution with steam while substantially simultaneously distilling the organic solvent.
Abstract:
A method and system for magnetic actuated mixing which use magnetic particles and magnetic field to facilitate the mixing for preparing latex emulsion. In embodiments, a suitable process includes dissolving a resin in an organic solvent, optionally adding a surfactant, adding a neutralization agent and water, adding magnetic particles, and subjecting the mixture to a magnetic actuated mixing to form a latex emulsion. In embodiments, the latex emulsion thus produced may be utilized to form a toner.
Abstract:
Processes for making toners, and in particular, emulsion aggregation (EA) toners. These toners exhibit a low melt temperature while simultaneously exhibiting excellent relative humidity sensitivity regarding charging properties. In embodiments, the process comprises the preparation of the latex emulsion comprising high ratio resin compositions by injection of steam and neutralization agent vapors into the latex emulsion.
Abstract:
Additive manufacturing processes featuring consolidation of thermoplastic particulates may form printed objects in a range of shapes. Inorganic nanoparticles disposed upon the outer surface of the thermoplastic particulates may improve flow performance of the thermoplastic particulates during additive manufacturing, but may be undesirable to incorporate in some printed objects. Polymer nanoparticles may be substituted for inorganic nanoparticles in some instances to address this difficulty and provide other advantages. Particulate compositions suitable for additive manufacturing may comprise: a plurality of thermoplastic particulates comprising a thermoplastic polymer and a plurality of polymer nanoparticles disposed upon an outer surface of the thermoplastic particulates, the polymer nanoparticles comprising a crosslinked fluorinated polymer.
Abstract:
A composition, a gas diffusion electrode, and a method for fabricating the same is disclosed. In an example, the composition includes carbon supported carboxyl surface functionalized silver nanoparticles. The gas diffusion electrode can be fabricated with the carbon supported carboxyl surface functionalized silver nanoparticles and deployed in a membrane electrode assembly for various applications.
Abstract:
A hybrid toner includes a core having at least one amorphous polyester resin and at least one crystalline polyester resin, and at least one styrene/acrylate resin, a shell comprising at least one styrene/acrylate resin, at least one wax, and optionally a pigment dispersion, the first modulated differential calorimetry scan of the hybrid toner shows at least two melting point peaks below about 80° C., and the difference between the two melting point peaks is less than or equal to about 15° C.
Abstract:
A process is provided comprising forming a phase inversed resin emulsion comprising a resin, water, and an organic solvent, wherein the process excludes subjecting the phase inversed resin emulsion to an organic solvent removal technique, thereby retaining the organic solvent in the phase inversed resin emulsion. The phase inversed resin emulsion may be formed by dissolving a resin in an organic solvent to form a resin mixture; optionally, adding a neutralizing agent to the resin mixture to neutralize acid groups on the resin; and adding a sufficient amount of water to the resin mixture to emulsify and induce phase inversion in the resin mixture. Also provided are processes for preparing particles and processes for preparing toners utilizing the phase inversed resin emulsions.