Abstract:
A composition, a gas diffusion electrode, and a method for fabricating the same is disclosed. In an example, the composition includes carbon supported carboxyl surface functionalized silver nanoparticles. The gas diffusion electrode can be fabricated with the carbon supported carboxyl surface functionalized silver nanoparticles and deployed in a membrane electrode assembly for various applications.
Abstract:
The disclosure provides a toner composition comprising toner particles with a core and a shell, wherein the core comprises a polyester polymer and a styrene acrylate polymer, and the shell comprises a polyester polymer and, optionally, a styrene acrylate polymer, either or both of which can be the same or different from that in the core.
Abstract:
A method for producing metal or metal alloy particles may include: mixing a mixture comprising: (a) a metal or a metal alloy, (b) a carrier fluid, and optionally (c) an emulsion stabilizer at a temperature at or greater than a melting point of the metal or the metal alloy to create a dispersion of molten droplets of the metal or the metal alloy dispersed in the carrier fluid; cooling the mixture to below the melting point of the metal or the metal alloy to form metal or metal alloy particles; and separating the metal or metal alloy particles from the carrier fluid, wherein the metal or metal alloy particles comprise the metal or the metal alloy and the emulsion stabilizer, if included.
Abstract:
Carbon supported surface functionalized silver nanoparticles and a method for preparing the same are disclosed. For example, a composition includes carbon supported surface functionalized silver nanoparticles, The methods include preparing a liquid-containing composition comprising a plurality of silver nanoparticles and adding a carbon structure with the liquid-containing composition to form the carbon supported silver nanoparticles in-situ or mixing a composition comprising a carbon structure, a plurality of silver nanoparticles, and a liquid to grow silver nanoparticles on the carbon structure in-situ.
Abstract:
An electrode and a method for fabricating the same is disclosed. For example, the method to fabricate the electrode includes preparing a deposition composition comprising amine-functionalized silver nanoparticles and a solvent and depositing the deposition composition onto an electrically conductive substrate. The electrode can be deployed in a gas diffusion electrode.
Abstract:
A structured organic film (SOF) is disclosed including a plurality of segments, a plurality of linkers, and a plurality of ionic capping segments, where at least one or more ionic capping segments may include imidazolium. Implementations of the structured organic film (SOF) include where a concentration of ionic capping segments in the SOF is from about 0.1 to about 5.0 molar equivalents of ionic capping segments as compared to a concentration of nonionic segments in the SOF. A thickness of the SOF is from about 100 nm to about 500 μm. At least one of the plurality of ionic capping segments may include n-hydroxyethyl-1,2,4,5-tetramethylimidazolium (NETMImBr). At least one of the plurality of ionic capping segments may include n-hydroxypropyl-1,2,4,5-tetramethylimidazolium (NPTMImBr). An ion-exchange membrane may include the structured organic film (SOF).
Abstract:
A gas diffusion electrode and a method for fabricating the same is disclosed. The gas diffusion electrode can be deployed in a membrane electrode assembly for various applications. In an example, the method to fabricate the gas diffusion electrode includes preparing an ink comprising carbon supported surface functionalized silver nanoparticles and depositing the ink on an electrically conductive surface.