Abstract:
Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR′, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3−, ˜COO−, and ˜NH4+groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
Abstract:
An apparatus for monitoring an input optical signal at a plurality of distinct optical frequencies is disclosed wherein a demultiplexing arrayed waveguide grating (AWG) having a plurality of M>1 Vernier input ports is disposed between an optical switch and a photodiode array coupled to the output ports of the AWG. In operation, the optical switch sequentially provides the input optical signal into each of the Vernier ports, and signals detected by photodiodes are stored in a memory unit. The apparatus is capable of monitoring the input optical signal with a frequency step which is M times smaller than a frequency spacing between the AWG transmission bands, and obtain M frequency-resolved readings from each photodiode.
Abstract:
An apparatus for monitoring an input optical signal at a plurality of distinct optical frequencies is disclosed wherein a demultiplexing arrayed waveguide grating (AWG) having a plurality of M>1 Vernier input ports is disposed between an optical switch and a photodiode array coupled to the output ports of the AWG. In operation, the optical switch sequentially provides the input optical signal into each of the Vernier ports, and signals detected by photodiodes are stored in a memory unit. The apparatus is capable of monitoring the input optical signal with a frequency step which is M times smaller than a frequency spacing between the AWG transmission bands, and obtain M frequency-resolved readings from each photodiode.