Abstract:
Disclosed herein are various embodiments of the systems and methods for management of information among various medical providers and/or facilities. According to various embodiments, the systems and methods disclosed herein may facilitate the completion of location specific forms in a variety of formats by medical professionals. Certain embodiments may be employed by remotely located medical professional utilizing telemedicine technologies. Such systems may provide medical professionals utilizing telemedicine technologies with a consistent interface for gathering and inputting patient information, while continuing to allow for the use of a wide variety of forms by different medical providers and facilities. In addition to facilitating the use of location-specific forms, the systems and methods for management of information disclosed herein may also be used for the collection of patient care metrics.
Abstract:
A proctoring system that includes a communication device coupled to a remote station. The remote station has a visual display that displays first information relating to an action that causes an effect on an object, and simultaneously displays second information relating to the effect on the object. The remote station includes at least one input device that allows a communication to be transmitted by an operator to the communication device. By way of example, during the deployment of a heart stent, a specialist doctor may remotely view real-time fluoroscopy imagery and patient hemodynamics. The specialist can remotely proctor medical personnel on the proper orientation and timing requirements for installing the stent.
Abstract:
A robot system that includes a robot face with a monitor, a camera, a speaker and a microphone. The robot face is connected to a stand that can be placed in a chair. The stand is configured so that the robot face is at a height that approximates the location of a person's head if they were sitting in the chair. The robot face is coupled to a remote station that can be operated by a user. The face includes a monitor that displays a video image of a user of the remote station. The stand may be coupled to the robot face with articulated joints that can be controlled by the remote station. By way of example, the user at the remote station can cause the face to pan and/or tilt.
Abstract:
A telepresence system that includes a portable telepresence apparatus coupled to a remote control station. The telepresence apparatus comprises a monitor, a camera, a speaker, a microphone and a viewfinder screen coupled to a housing. The view finder screen allows the user to view the image being captured by the camera. The portable telepresence apparatus is a hand held device that can be moved by a holder of the device in response to audio commands from the remote station. The telepresence apparatus can be used by medical personnel to remotely view a patient in a fast and efficient manner.
Abstract:
A robot system that includes a mobile robot and a portable control station that communicate through a cellular network. Utilizing a cellular network allows the control station to be a portable device such as a laptop computer or a personal digital assistant.
Abstract:
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
Abstract:
A remote controlled robot system that includes a mobile robot and a remote control station. The mobile robot is controlled by the remote control station and includes a robot monitor, and a robot camera that captures a robot image. The system also includes a medical image device that can be coupled to the robot. The remote control station includes a camera that captures a remote station image, and a monitor that displays the robot image captured by the robot camera in a robot view field, displays the remote station image in a station view field. The robot transmits the robot and medical images to the remote control station such that a larger portion of a network bandwidth is allocated for the medical image than the robot image.
Abstract:
A robot that includes an arm coupled to a platform. The arm includes an actuator that moves a second arm linkage relative to a first arm linkage. In a first mode of operation the actuator moves the second linkage in a first degree of freedom. In a second mode of operation the actuator moves the second linkage in a second degree of freedom. The use of a single actuator to provide two degrees of freedom reduces the number parts and associated cost of the arm. The arm further includes a grasper that can grab an object such as a wheelchair. The robot can be used to push the wheelchair. Commands to operate the robot can be generated at a remote input station and transmitted through a broadband network.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.