Abstract:
The disclosure relates to a pump for implantation into a vessel or a heart, with the pump being introduced in a first state into the vessel or heart in order then be functionally changed over to a second state in the vessel or in the heart, having a drive part and a delivery part, where the drive part is not functional in the first state and becomes functional as a result of the changeover to the second state, wherein the drive part has an electric motor, where the electric motor is embodied as a wet rotor, and where, in the first state, the rotor of the electric motor and the stator of the electric motor are arranged so as to be separate from one another, and where the rotor of the electric motor is moved into the stator of the electric motor in the second state, where the rotor can drive the delivery part in the second state.
Abstract:
A molded interconnect device can carry a Hall sensor for transducing a position of a rotor of the implantable blood pump. The molded interconnect device includes one or more integrated electronic circuit traces configured to electrically connect the hall sensor with a printed circuit board of the implantable blood pump, and the molded interconnect device is configured to be mounted to the printed circuit board.
Abstract:
A fluid pump device changeable in diameter is provided. The device has a pump housing which is changeable in diameter and with a rotor which is changeable in diameter. The device has at least one delivery element for fluid, as well as a drive shaft on which the rotor is rotatably mounted. A bearing arrangement is arranged on the drive shaft or its extension, at the distal end of the drive shaft behind the rotor seen from the proximal end of the drive shaft. The bearing arrangement has struts, which elastically brace between a hub of the bearing arrangement and the pump housing.
Abstract:
Various “contactless” bearing mechanisms including hydrodynamic, hydrostatic, and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. These design features may be combined. In one embodiment, the pump apparatus includes a rotor having a bore, a ring-shaped upper rotor bearing magnet, and a ring-shaped lower rotor bearing magnet. The bearing magnets are concentric with the bore. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
Abstract:
The present invention provides a rotary blood pump with both an attractive magnetic axial bearing and a hydrodynamic bearing. In one embodiment according to the present invention, a rotary pump includes an impeller assembly supported within a pump housing assembly by a magnetic axial bearing and a hydrodynamic bearing. The magnetic axial bearing includes at least two magnets oriented to attract each other. One magnet is positioned in the spindle of the pump housing while the other is disposed within the rotor assembly, proximate to the spindle. In this respect, the two magnets create an attractive axial force that at least partially maintains the relative axial position of the rotor assembly. The hydrodynamic bearing is formed between sloping surfaces that form tight clearances below the rotor assembly.
Abstract:
A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
Abstract:
A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
Abstract:
A centrifugal pump (10) includes a housing (26), an impeller (28) that is rotatably disposed inside the housing (26), a shaft (62) that is provided at a center rotational axis of the impeller (28), and bearings (70) that pivotally support the shaft ends (66). At least one of the shaft ends (66) has surface roughness Ra equal to or less than 0.21 μm and/or surface roughness Ry equal to or less than 1.49 μm.
Abstract:
An axial-flow blood pump has a rotatable impeller assembly rotatable about an axis and itself having a radially projecting blade and permanent magnets, A stationary stator assembly has stator windings interacting with the permanent magnets and a bearing system supporting the rotatable impeller assembly for rotation about the axis relative to the stator assembly. A stent implantable into a blood vessel is connected to ends of supports for coaxially mounting the stator assembly carrying the impeller assembly in the stent.
Abstract:
A heart assist device comprising a rotary pump housing having a cylindrical bore, a pumping chamber and a motor stator including an electrically conductive coil located within the housing and surrounding a portion of the cylindrical bore. A rotor has a cylindrical shaft, at least one impeller appended to one end of the shaft, and a plurality of magnets located within the shaft. The rotor shaft is positioned within the housing bore with the magnets opposite the motor stator, and the impeller is positioned within the pumping chamber. The housing bore is closely fitted to the outer surface of the shaft forming a hydrodynamic journal bearing, with the pumping chamber and journal bearing connected by a leak path of blood flow between the pumping chamber and the journal bearing. A backiron of the motor stator attracts the rotor magnets to resist longitudinal displacement of the rotor within the housing during operation. The relative orientation of positions of the inflow, outflow, and leakage flow paths may be varied within the pump, such as to accommodate different intended methods for implantation and/or use.