Abstract:
Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
Abstract:
In accordance with an embodiment, a multi-layered flexible printed circuit (FPC) is disclosed that includes two or more insulating layers to route conductive traces carrying radio frequency (RF) signals, e.g., data signals, and conductive traces carrying direct current (DC) signals, e.g., power signals and low-frequency control signals, while sufficiently isolating the RF signals from electrical interference by the DC transmission lines. This advantageously eliminates having two or more separate FPCs to electrically couple each optical subassembly, e.g., receiver optical subassemblies (ROSAs) and transmitter optical subassemblies (TOSAs), to associated circuitry in a transceiver housing, which saves space and reduces manufacturing complexity, for example.
Abstract:
Methods to systematize the development of machines using inexpensive, fast, and convenient fabrication processes are disclosed. In an embodiment, a folding pattern and corresponding circuit design can provide the blueprints for fabrication. The folding pattern may be provided (e.g. laser machined) on a flat sheet of substrate material, such as a polymer. The circuit pattern may be generated by etching or applying (e.g. sputtering) a copper foil layer onto the substrate. Circuit components and actuators may then be added at specified locations. The flat substrate may then be folded along the predefined locations to form the final machine. The machine may operate autonomously to perform a task.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
A molded interconnect device can carry a Hall sensor for transducing a position of a rotor of the implantable blood pump. The molded interconnect device includes one or more integrated electronic circuit traces configured to electrically connect the hall sensor with a printed circuit board of the implantable blood pump, and the molded interconnect device is configured to be mounted to the printed circuit board.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
A flexible printed circuit board having enhanced peeling force and a touch panel including the same are provided. The flexible printed circuit board (FPCB) includes a first bonding portion and a second bonding portion respectively bonded to a first circuit unit and a second circuit unit. The first bonding portion includes a pad corresponding portion corresponding to pads of the first circuit unit and dummy portions outwardly extending from both end portions of the pad corresponding portion. An FPCB wiring formation portion includes FPCB wirings respectively connected to the pads and extending from the first bonding portion to the second bonding portion and concave portions respectively disposed to be adjacent to the dummy portions and having a curved surface.
Abstract:
[Problem] To allow an efficient sheet layout of a flexible printed circuit board having a plurality of cable sections extending in different directions and to improve a yield.[Solution] A method of manufacturing a flexible printed circuit board that includes a component mounting section (1) having lands (1a), a plurality of flexible cable sections (2) having wirings and extending in different directions from the component mounting section (1), and a connection section (3) having terminals (3a) connected with the land (1a) through the wiring, the method including manufacturing partial FPCs in a sheet in a unit of a partial FPC that includes a partial component mounting section (1A) that is a part of the component mounting section, a cable section (2) extending from the partial component mounting section (1A), and a connection section (3) disposed in the cable section (2), cutting out the partial FPC (4A) from the sheet, performing an alignment using alignment targets (29, 30) of the partial FPC (4A) and a support plate (5) so that the partial component mounting sections (1A) of respective partial FPCs (4A) configure the component mounting section (1), and fixing the partial FPCs (4A) onto the support plate.
Abstract:
A method of manufacturing a flexible printed circuit board that includes a component mounting section having lands, a plurality of flexible cable sections having wirings and extending in different directions from the component mounting section, and a connection section having terminals connected with the land through the wiring, the method including manufacturing partial FPCs in a sheet in a unit of a partial FPC that includes a partial component mounting section that is a part of the component mounting section, a cable section extending from the partial component mounting section, and a connection section disposed in the cable section, cutting out the partial FPC from the sheet, performing an alignment using alignment targets of the partial FPC and a support plate so that the partial component mounting sections of respective partial FPCs configure the component mounting section, and fixing the partial FPCs onto the support plate.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.