Abstract:
A method for manufacturing a fan blade includes the steps of, firstly, providing a mold. Then a mixture of metal powder and adhesive material is injected into the mold to forming a green body of the blade. Next, the adhesive material is removed from the green body of the blade. Finally, the green body of the blade is sintered to form the fan blade. A fan with such blades is also provided.
Abstract:
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Abstract:
A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10−12 to 1×10−1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
Abstract:
A negative electrode material for a non-aqueous electrolyte secondary battery comprising an alloy including silicon and a transition metal selected from the group consisting of titanium, zirconium, vanadium, molybdenum, tungsten, iron, and nickel; and a silicon oxide film and an oxide film of the transition metal formed on a surface of the alloy wherein the alloy includes an A phase including silicon and a B phase including a crystalline alloy of silicon and the transition metal. The negative electrode material has a silicon oxide film and an oxide film of the transition metal on the surface of the alloy wherein the thickness ratio of the transition metal oxide film to the silicon oxide film is at least 0.44 and smaller than 1.
Abstract:
A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 μm and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
Abstract:
Glycerol is used as a solvent medium for the precipitation of a complex of nickel and glycerol material. The precipitate is separated from the liquid solvent and dried and calcined in air to produce small (nanometer size) particles characterized by a nickel core encased in a nickel oxide shell. The proportions of nickel core and nickel oxide shell can be controlled by management of the time and temperature of heating in air. Prolonged heating in air can produce nickel oxide particles, or calcining of the precipitate in nitrogen produces nickel particles.
Abstract:
The object of the present invention is provide a metal nanoparticle which has a nano-sized average diameter while being highly stable as a particle, and a method for producing such metal nanoparticle. Particularly provides a metal nanoparticle having characteristics such as particle diameter and particle size distribution suitable for forming a conductive coating layer, and a method for producing such metal nanoparticle. The metal nanoparticle of the present invention is characterized in that it is obtained by reacting a reducing agent act on a solution containing an organic acid metal salt and an amine.
Abstract:
There is provided nanometer-size spherical particles. The particles of the present invention are made of at least one selected from the group consisting of a metal, an alloy, and a metal compound. The particles include one or both of a polycrystalline region and a single-crystalline region. The particles have a particle size of less than 1 μm; and a sphericity of −10% to +10%.
Abstract:
A direct manufacturing technique involving rapid solidification processing uses a reaction between a metallic molten pool and a reactant gas in an inert atmosphere to form alloys with improved desired properties. By utilizing rapid solidification techniques, solubility levels are increased resulting in alloys with unique mechanical and physical properties. Laser deposition of alloys in atmospheres of varying reactant content produce compositions with intermingled and significantly improved overall properties.
Abstract:
A ferromagnetic metal powder for a magnetic recording medium that combines good magnetic properties and oxidation stability, and a magnetic recording medium using the powder. A method of producing the magnetic powder comprises using oxygen to form an oxide film, then changing the state of the oxide film by using moderate gas phase activation treatment in an active gas, using, for example, CO or H2 or other such gas having reducing properties. ESCA-based measurements show that the binding energy peak of the powder is more to the low energy side compared to when the above treatment is not used, showing that the oxide film has oxidation resistance. The storage stability of a magnetic recording medium is improved by using the powder.
Abstract translation:用于磁记录介质的强磁性金属粉末,其具有良好的磁特性和氧化稳定性,以及使用该粉末的磁记录介质。 制造磁性粉末的方法包括使用氧气形成氧化膜,然后通过使用例如CO或H 2 O 2的活性气体中的中等气相活化处理来改变氧化膜的状态, 或其它具有还原性能的气体。 基于ESCA的测量显示,与不使用上述处理相比,粉末的结合能峰值更高于低能量侧,表明氧化膜具有抗氧化性。 磁粉记录介质的储存稳定性得到改善。