Abstract:
A powder metallurgical component has a chromium content of at least 80% by weight and pores and/or oxide inclusions which are present in the component. The number per unit area of a sum of pores and oxide inclusions at a cut surface through the component in at least one region is at least 10,000 per mm2.
Abstract translation:粉末冶金组分的铬含量为至少80重量%,孔和/或氧化物夹杂物存在于组分中。 在至少一个区域中通过部件的切割表面处的孔和氧化物夹杂物的总和的每单位面积的数量为至少10,000 / mm 2。
Abstract:
A method of producing a porous aluminum is provided. The method includes preparing a powder mixture of at least one of Al and an Al alloy and carbon nanoparticles and melting the powder mixture. In addition, the method includes oxidizing the melt using oxygen bubbling and solidifying the melt.
Abstract:
The invention uses supercritical fluid technology for removing the binder in the powder injection moulding (PIM) parts. The invention comprises of the feedstock formulation and its supercritical debinding process. In the debinding system, pressure and heat are applied to the carbon dioxide (CO2) to a certain level, in such a way to transform the CO2 to supercritical state. The supercritical CO2 is used as a solvent to remove the binder in the PIM parts.
Abstract:
A method for preparing a powder of an alloy based on uranium and molybdenum in a metastable γ phase is provided, which comprises: a) putting at least one first reagent selected from uranium oxides and mixtures thereof, uranium fluorides and mixtures thereof, into contact with a second reagent consisting in molybdenum and a third reagent consisting in a reducing metal, the first, second and third reagents being in a divided form; b) reacting the reagents at a temperature≧the melting temperature of the third reagent and under an inert atmosphere, whereby this reaction leads to the formation of the alloy comprising uranium and molybdenum in the form of a powder, for which the particles are covered with a reducing metal oxide or fluoride layer; c) cooling the so formed powder at a rate at least equal to 450° C./hour; and d) removing the reducing metal oxide or fluoride layer which covers the particles of the powder of the alloy comprising uranium and molybdenum.
Abstract:
An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapor at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.
Abstract:
In order to achieve the object of providing a mixture by means of which, in particular, sintered moldings can be obtained that are virtually free of surface stains produced by soot particles, a mixture is proposed which comprises at least one pressing aid and at least one additive, wherein the additive is selected from a group of substances which have releasable carbon dioxide.
Abstract:
A method for manufacturing an annular nuclear fuel pellet is provided. In the method, an annular nuclear fuel green compact whose lateral cross-section is a trapezoid is prepared. The thickness of the annular nuclear fuel green compact reduces along one direction of the central axis, and a green density of the nuclear fuel green compact increases along one direction of the central axis. The annular nuclear fuel green compact is sintered under a reducing gas atmosphere so that the annular nuclear fuel pellet is obtained. According to this method, the annular pellet which has uniform inner and outer diameters and small diametric tolerances along the pellet height is fabricated without grinding the pellet surfaces.
Abstract:
A method for manufacturing an annular nuclear fuel pellet is provided. In the method, an annular nuclear fuel green compact whose lateral cross-section is a trapezoid is prepared. The thickness of the annular nuclear fuel green compact reduces along one direction of the central axis, and a green density of the nuclear fuel green compact increases along one direction of the central axis. The annular nuclear fuel green compact is sintered under a reducing gas atmosphere so that the annular nuclear fuel pellet is obtained. According to this method, the annular pellet which has uniform inner and outer diameters and small diametric tolerances along the pellet height is fabricated without grinding the pellet surfaces.
Abstract:
A high-frequency magnetic material is provided and includes: an oxide phase including: a first oxide of a first element being at least one selected from the group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and a second oxide of a second element being at least one selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, and Zn, the first oxide and at least a part of the second oxide being formed into a solid solution; and magnetic metal particles including at least one of Fe and Co and having a particle size of 1 to 100 nm, the magnetic metal particles being deposited on a surface and inside of the oxide phase, the magnetic metal particles occupying 50% of a volume of the high-frequency magnetic material exclusive of a void.
Abstract:
The present invention relates to a metal nanocomposite powder reinforced with carbon nanotubes and to a process of producing a metal nanocomposite powder homogeneously reinforced with carbon nanotubes in a metal matrix powder.