Abstract:
A track-bound vehicle converter comprises a block-wave generator (20) configured to be connected to a direct voltage source (21) and connected to a series resonance link (34), or to an inductive link, for providing the input of a direct converter (41) with semi sinusoidal current pulses. The direct converter has at least one phase leg (42-44) having on one hand one switch (45-47) connected to the link (34) and able to block voltages in both directions thereacross and conduct current in both directions therethrough and on the other a capacitor (48-50) connected in series therewith. The voltage across the capacitor (48-50) of the direct converter is used to provide a converter output with an alternating voltage.
Abstract:
Vehicles that are capable of connecting to the AC grid are described that comprise a prime mover and at least one motor generator. In one embodiment, a vehicle may be constructed as a plug-in hybrid system and using the powertrain under controller instruction to either place power on an AC power line (to service AC grids) or to draw power from the AC power line to add electrical energy to the batteries on the vehicle. In some aspects, vehicles may test whether the power needed to service the AC power line may be satisfied by the on-vehicle batteries or, if not, whether and how much power to extract from the prime mover. In some aspects, vehicles may have a thermal management system on board to dynamically supply desired heat dissipation for the powertrain, if the powertrain is using the prime mover to supply power to the AC grid.
Abstract:
A selector is to choose a target facility from the at least one facility based on a supplier position and a quantity of the energy suppliable. A distance calculator is to calculate a vehicle-facility distance from a current position to a facility position of a target energy supplier. A drivable range calculator is to calculate a drivable range of a vehicle based on a quantity of energy stored in an energy storage. A determining device is to determine whether or not to permit a power supplier to supply an electrical energy to an external device based on the vehicle-facility distance and the drivable range to control electricity supply from the power supplier to the external device.
Abstract:
A system includes a plurality of smart outlets and a backend system in wireless communication with the smart outlets. The smart outlets are configured to provide electrical power from an electrical system to respective power loads, and configured to measure power consumption characteristics thereof the respective power loads. The power consumption characteristics may include real power, apparent power or a combination thereof consumed by the respective power loads. The backend system may be configured to wirelessly receive the power consumption characteristics from the smart outlets for analysis in accordance with a power distribution schedule of the electrical system, and wirelessly transmit a command signal to one or more of the smart outlets in various instances response to the analysis. This command signal may instruct the respective one or more smart outlets to shed or restore power to respective power loads from the electrical system.
Abstract:
A track-bound vehicle converter comprises a block-wave generator (20) configured to be connected to a direct voltage source (21) and connected to a series resonance link (34), or to an inductive link, for providing the input of a direct converter (41) with semi sinusoidal current pulses. The direct converter has at least one phase leg (42-44) having on one hand one switch (45-47) connected to the link (34) and able to block voltages in both directions thereacross and conduct current in both directions therethrough and on the other a capacitor (48-50) connected in series therewith. The voltage across the capacitor (48-50) of the direct converter is used to provide a converter output with an alternating voltage.
Abstract:
A vehicle includes a feeding system supplying an electric power to an external device disposed outside the vehicle, a controller controlling the operation of the feeding system, and an information output unit outputting predetermined information. The controller performs the processing of determining whether or not feeding can be performed from the feeding system to the external device. When the feeding from the feeding system to the external device is prohibited, the controller causes the information output unit to output prohibition information about the prohibition of the feeding including the contents of a determination processing.
Abstract:
A motor vehicle drive system utilizing a flywheel for storing recaptured kinetic energy from a moving vehicle is described. Alternators mounted to the drive train generate electrical power from the passively spinning wheels of a moving vehicle. This power may be used to rotate a flywheel. Energy from the continuously spinning flywheel is used or stored for later use to charge batteries which provide power to the drive wheels of the vehicle. The disclosed drive system can be mounted in an all-electric or gasoline-electric hybrid motor vehicle and provides additional power to an electric drive motor of the vehicle.
Abstract:
A motor vehicle drive system utilizing a flywheel for storing recaptured kinetic energy from a moving vehicle is described. Alternators mounted to the drive train generate electrical power from the passively spinning wheels of a moving vehicle. This power may be used to rotate a flywheel. Energy from the continuously spinning flywheel is used or stored for later use to charge batteries which provide power to the drive wheels of the vehicle. The disclosed drive system can be mounted in an all-electric or gasoline-electric hybrid motor vehicle and provides additional power to an electric drive motor of the vehicle.
Abstract:
A motor vehicle drive system utilizing a flywheel for storing recaptured kinetic energy from a moving vehicle is described. Alternators mounted to the drive train generate electrical power from the passively spinning wheels of a moving vehicle. This power may be used to rotate a flywheel. Energy from the continuously spinning flywheel is used or stored for later use to charge batteries which provide power to the drive wheels of the vehicle. The disclosed drive system can be mounted in an all-electric or gasoline-electric hybrid motor vehicle and provides additional power to an electric drive motor of the vehicle.
Abstract:
A charging system detachably drawing from a power source comprising: (a) an electrical output configuration; (b) an electrical input configuration; and (c) an energy store configuration; and methods of provisioning the energy store, the charging system, and electric vehicle charger devices.