Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
Systems and methods use cameras to provide autonomous navigation features. In one implementation, a driver assist navigation system is provided for a primary vehicle. The system may include at least one image capture device configured to acquire a plurality of images of an area in a vicinity of the primary vehicle; a data interface; and at least one processing device. The at least one processing device may be configured to: locate in the plurality of images a leading vehicle; determine, based on the plurality of images, at least one action taken by the leading vehicle; and cause the primary vehicle to mimic the at least one action of the leading vehicle.
Abstract:
Methods and systems for detection of a construction zone sign are described. A computing device, configured to control the vehicle, may be configured to receive, from an image-capture device coupled to the computing device, images of a vicinity of the road on which the vehicle is travelling. Also, the computing device may be configured to determine image portions in the images that may depict sides of the road at a predetermined height range. Further, the computing device may be configured to detect a construction zone sign in the image portions, and determine a type of the construction zone sign. Accordingly, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Systems and methods use cameras to provide autonomous navigation features. In one implementation, a driver assist navigation system is provided for a primary vehicle. The system may include at least one image capture device configured to acquire a plurality of images of an area in a vicinity of the primary vehicle; a data interface; and at least one processing device. The at least one processing device may be configured to: locate in the plurality of images a leading vehicle; determine, based on the plurality of images, at least one action taken by the leading vehicle; and cause the primary vehicle to mimic the at least one action of the leading vehicle.
Abstract:
The driving support device includes: a recognition section configured to recognize each positions of a specific object and a road marking with reference to peripheral information of a own vehicle acquired by a sensor section configured to acquire the peripheral information; and a control section configured to perform different controls on the own vehicle, with reference to recognition results of the recognition section, depending on whether the specific object is present in a first state or a second state, the first state being a state where the specific object is present in a region more outside than a traveling lane with respect to an imaginary line that extends along a traveling direction of the own vehicle, the second state being a state where the specific object is present in a region on a more central side of the traveling lane with respect to the imaginary line.
Abstract:
A method, for controlling direction of a vehicle as desired in connection with operation of an autonomous driving maneuver using selectively, independently and/or in combination, multiple electrical park brakes (EPBs) and multiple hydraulic brakes (HBs). The method includes determining a total brake force needed for redirecting the vehicle in a pre-determined manner, and determining whether an applicable EPB can provide the total brake force needed. The method further includes providing, if it is determined that the applicable EPB can provide the total brake force needed, a brake command instructing the applicable EPB to apply the total brake force. The method also includes determining, if it is determined that the EPB is alone insufficient, an optimal fusion of the EPBs and the HBs, including two front and two rear HBs, two rear EPBs, and in some embodiments, also two front EPBs.
Abstract:
In a method and apparatus for assisting the driver of a vehicle in maintaining a traffic lane limited by traffic lane markings, the traffic lane markings and the position of the vehicle in the traffic lane are detected. Upon an actual or impending change of traffic lanes a lane change warning is output to the driver of the vehicle in a first step, and a course correcting actuating intervention counteracting the lane change is carried out in a second step. The actuating intervention is carried out only if the change of traffic lanes is impermissible due to the type of traffic lane marking to be crossed during the traffic lane change, or if the lane change is not possible without danger due to collision-endangering objects present on the side of the traffic lane.
Abstract:
An unmanned autonomous traveling service apparatus and method based on driving information database that allows an unmanned autonomous traveling vehicle to be autonomously operated stably without performing a large scale computing process in real time by allowing the unmanned autonomous traveling vehicle to be autonomously operated based on driving information generated in a database and allowing the unmanned autonomous traveling vehicle to be autonomously operated based on an installed sensor at the time of a traffic lane change or an unexpected situation. In particular, the driving information is collected from drivers throughout the world to create the database for the driving information.
Abstract:
Methods and systems for detection of a construction zone sign are described. A computing device, configured to control the vehicle, may be configured to receive, from an image-capture device coupled to the computing device, images of a vicinity of the road on which the vehicle is travelling. Also, the computing device may be configured to determine image portions in the images that may depict sides of the road at a predetermined height range. Further, the computing device may be configured to detect a construction zone sign in the image portions, and determine a type of the construction zone sign. Accordingly, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
A driver assistance system for a vehicle includes a forward facing and a control having an image processor that processes image data captured by the camera. At least in part responsive to processing by the image processor, an alert to a driver of the equipped vehicle is generated based upon at least one of (i) detection of an inappropriate lane change maneuver of the equipped vehicle and (ii) a detection of a potential impact with another vehicle. The image processor processes image data captured by the forward facing camera to detect a traffic control device present within the field of view of the forward facing camera, and the system may generate an alert to the driver when it is determined that the vehicle is not appropriately responding to the detected traffic control device.