Abstract:
Improved photonic band-gap optical fibre The present invention relates in particular to improved photonic band-gap optical fibres that can confine light to a core region of the fibre by the action of both a photonic band-gap cladding and an antiresonant core boundary, at the interface between the core and cladding. According to embodiments of the present invention, a fibre has a core, comprising an elongate region of relatively low refractive index, a photonic bandgap structure arranged to provide a photonic bandgap over a range of wavelengths of light including an operating wavelength of light, the structure, in a transverse cross section of the waveguide, surrounding the core and comprising elongate relatively low refractive index regions interspersed with elongate relatively high refractive index regions and a relatively high refractive index boundary at the interface between the core defect and the photonic bandgap structure, the boundary having a thickness around the core such that the boundary is substantially anti-resonant at the operating wavelength of the fibre. In preferred embodiments, the core boundary is a relatively constant thickness region of glass around a hollow core.
Abstract:
In one aspect, the invention features a fiber waveguide having a waveguide axis, including a first portion extending along the waveguide axis, and a second portion different from the first portion extending along the waveguide axis surrounding the first portion, wherein at least one of the first and second portions comprises a chalcogenide glass selected from the group consisting of Selenium chalcogenide glasses and Tellurium chalcogenide glasses, both the first and second portions have a viscosity greater than 103 Poise at some temperature, T, and the fiber waveguide is a photonic crystal fiber.
Abstract:
The invention provides a monomode preform (2) comprising a mother preform (22) housed in an outer sleeve tube (20). It is characterized in that it also includes an intermediate tube (21) between the mother preform (22) and said outer tube (20), the intermediate tube (21) possessing viscosity at fiber-drawing temperature which is less than the viscosity(ies) at fiber-drawing temperature of said mother preform (22) and of said outer tube (20). The invention also provides a method of manufacturing a monomode optical fiber. The fiber has a core that is better centered and less deformed than in the prior art. An application of the invention lies in making an optical amplifier.
Abstract:
An apparatus and method for drawing low loss fluoride glass fibers from a preform. A stream of reactive gas is passed around the preform and fiber so as to prevent moisture and oxygen contamination of the fiber while the fiber is being drawn. The apparatus includes an insulating vessel which surrounds a heating chamber in which the fiber is drawn, and a very narrow heating zone within the chamber for preventing crystallization of the drawn fiber.
Abstract:
A method of fabricating a fluoride glass optical fiber preform which has a fluoride glass core surrounded by a fluoride glass optical cladding includes the following steps: introducing the cladding glass in the molten state into a bottom part of a mold having a cylindrical inside cross-section, introducing the core glass in the molten state into a top part of the mold above the cladding glass, and inwardly solidifying the core glass and the cladding glass from the interface between the glasses and the mold. The kinetics of solidification of the core glass are such that complete solidification of the cladding glass occurs before complete solidification of the core glass. The method further includes the following operations: centrifuging the content of the mold simultaneously with the solidification, wherein because of the reduction in the volume of the glasses during the solidification, a central portion empty of glass and of substantially cylindrical cross-section is formed around an axis of the mold by the completely solidified cladding glass, which thereby forms the cladding of the preform, wherein the core glass is not completely solidified at the end of the centrifuging, after the centrifuging operation, causing the unsolidified core glass to flow into the central portion,so forming the core of the preform, and removing the solidified preform from the mold.
Abstract:
Lead-containing fluoride glass comprises 50-70 mol % of ZrF.sub.4, 3-5 mol % of LaF.sub.3, 0.1-3 mol % of YF.sub.3, and 2-15 mol % of NaF and/or LiF and/or CsF, where LaF.sub.3 +YF.sub.3 =4.5-6 mol %, and further comprises lead. An optical fiber comprises a core made of the lead-containing fluoride glass and a cladding surrounding the core. A process for producing an optical fiber comprises forming a base material for a core of the lead-containing fluoride glass, forming a base material for a cladding of fluoride glass containing 30-60 mol % of HfF.sub.4, and drawing the base materials into an optical fiber at a drawing temperature of 315-340 .degree. C.
Abstract:
A method and apparatus are provided for forming a glass preform which can be directly drawn into a single or multi-mode optical fiber. Single or multi-mode fibers drawn from the preforms described herein have high quality core-clad interfaces since the core and cladding materials are not exposed to crystallization temperatures upon the addition of the core material to cladding material.
Abstract:
An upconversion fiber laser with a double-clad fiber is pumped with a laser-diode-based laser pump source, the inner cladding of the fiber forming a low transmission loss waveguide for the pump light. The central core of the fiber is doped with an active lasing ionic species capable of undergoing upconversion excitation, such as certain rare earth ionic species. The use of a double-clad fiber permits the use of high power, high brightness laser diodes, including those with broad emitting apertures, as well as high power diode laser pumped fiber lasers, as the pump source, thereby achieving higher pump intensities within the upconversion laser fiber and improved upconversion efficiency. Pump brightness can be further increased with multiple pump schemes which use multiple pump wavelengths in different absorption bands, multiple pump wavelengths within the same absorption band, pump light from pairs of cross-polarized sources, and pumping from both ends of the fiber.
Abstract:
Halide glass articles, e.g. rods, tubes and preforms for making fluoride glass fibres, are prepared by melting and/or casting the articles under a low pressure, e.g. 0.01 to 500 mbars and, during the low pressure regime, a gas flow rate of between 0.01 to 100 liters/min (measured at NTP) is maintained. It has been found that subjecting the melts to a low pressure reduces the attenuation of the fibre which eventually results from the melts.
Abstract:
A method of forming a fiber glass preform includes the steps of: (a) pouring a cladding glass into a mold; (b) pouring a core glass on a flat horizontal upper surface of the cladding glass so as to form a united glass body having the core glass and the cladding glass under a condition that viscosity of the cladding glass and viscosity of the core glass are adjusted to certain predetermined values respectively so that the core glass is separated from and placed on the cladding glass; (c) cooling the united glass body to solidify the same so that the cladding glass is deformed by contraction thereof so as to produce a depression at a top middle portion thereof and that the core glass is deformed so as to form a projected portion thereof to fill the depression therewith; (d) separating the united glass body into an upper portion and a lower portion comprising the projected portion of the core glass; and (e) extruding the lower portion of the united glass body so as to form the fiber glass preform.