Abstract:
A thermally conductive filler can exhibit high thermal conductive properties with a reduced specific gravity, a thermally-conductive composite material and a wire harness contains such a thermally conductive filler, and a method manufactures a thermally conductive filler. A thermally conductive filler contains base particles and a coating layer coating the particles, the coating layer contains a gel-like substance that is bonded to the surfaces of the base particles through chemical bonding and coats the surfaces of the base particles, and a thermally-conductive substance that is dispersed in the layer of the gel-like substance and has a higher thermal conductivity and a larger specific gravity than the base particles and the gel-like substance. Also, a thermally-conductive composite material is obtained by dispersing the thermally conductive filler in a matrix material. Furthermore, a wire harness contains the thermally-conductive composite material.
Abstract:
The present invention relates to a novel secondary battery pack with improved thermal management useful for an all-electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or battery packs used for other vehicles batteries, and more particularly, to the use of a specific material for thermally insulating a secondary battery pack and further minimizing the propagation of thermal runaway within a battery pack.
Abstract:
The present invention relates to a novel secondary battery pack with improved thermal management useful for an all-electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or battery packs used for other vehicles batteries, and more particularly, to the use of a specific material for thermally insulating a secondary battery pack and further minimizing the propagation of thermal runaway within a battery pack.
Abstract:
The present invention provides a cover element having a pressure-sensitive adhesive sheet preliminarily laminated thereto, wherein the pressure-sensitive adhesive sheet comprises a pressure-sensitive adhesive layer in which a refractive index adjustment zone having a refractive index greater than that of a base pressure-sensitive adhesive material thereof is formed over a given range from a surface of the pressure-sensitive adhesive layer in a thickness direction thereof, whereby: in a lamination process of a customer which is a supply destination of the cover element, it becomes possible to eliminate a need to distinguish between obverse and reverse sides of the pressure-sensitive adhesive sheet itself; and, when the cover element is bonded to an optical element through the pressure-sensitive adhesive layer, it becomes possible to suppress internal reflection in a laminate formed of these optical elements.
Abstract:
A composition for fused filament fabrication may include polylactic acid resin and talc. The composition may range from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The composition may be configured as filaments or pellets adapted to be used in a fused filament fabrication process. A method for generating a resin-based structure may include providing a resin source that may include polylactic acid resin and talc. The resin source may include from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The method may also include heating the resin source to a temperature greater than the melting temperature for semi-crystalline resins or significantly greater than glass transition temperature for amorphous resins, and depositing the heated resin source in a layered manner to form the resin-based structure.
Abstract:
A curable composition and use thereof are provided. The composition can be useful in exhibiting excellent processability and workability, and providing a cured product which exhibits superior light extraction efficiency, crack resistance, hardness, thermal shock resistance, and adhesive properties, has superior reliability under severe conditions for a long period of time and prevents opacity and stickiness onto a surface thereof when cured. Also, the curable composition capable of preventing precipitation of an additive such as a fluorescent material or a photoconversion material and being formed into a cured product having excellent transparency even when the additive is added to the curable composition can be provided.
Abstract:
Provided are carbon fibers which have a thicker single fiber fineness of the polyacrylonitrile-based precursor fiber bundles and lower production costs, and which have excellent mechanical properties. Also provided are: carbon fiber bundles having a single fiber fineness of 0.8-2.1 dtex, a strand strength of 4.9 GPa or greater, and a strand elastic modulus of 200 GPa or greater; carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles. carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles.
Abstract:
This invention relates to viscoelastic silicone rubber compositions that are the products of the reaction of: (a) a silanol-terminated polyorganosiloxane base; (b) a boron-containing crosslinking agent; and (c) a siloxane bond-forming crosslinking agent. In a viscoelastic silicone rubber composition of the invention some of the crosslinks, the siloxane crosslinks, are permanent and others of the crosslinks, the boron-containing crosslinks, are temporary. Because a fraction of its crosslinks can come apart and then reform, a viscoelastic silicone rubber composition of the invention can relax stress in response to strain and thus adapt to new shapes. The composition has sufficient permanent crosslinks, however, to establish a permanent equilibrium shape to which the composition will eventually return when not subject to any imposed stress. A viscoelastic silicone rubber composition has sufficient temporary crosslinks to give the composition a stiffness that is greater on short timescales than it is on longer timescales.
Abstract:
To provide a conductive pattern formation method capable of improving conductivity of a conductive pattern and a composition for forming a conductive pattern by means of photo irradiation or microwave heating. A composition for forming a conductive pattern that contains copper particles each having a copper oxide thin film formed on the entire or a part of a surface thereof, plate-like silver particles each being 10 to 200 nm thickness, and a binder resin is prepared. The composition for forming a conductive pattern is printed in a pattern having a desired shape on a substrate. Photo irradiation or microwave heating is applied to the printed pattern to thereby produce a copper/silver sintered body, to form a conductive film.
Abstract:
Crosslinkable compositions based on organosilicon compounds, more particularly RTV-1 sealants, contain (A) at least one organosilicon compound having at least two condensable radicals, (B) at least one finely divided silicon dioxide having a BET surface area of 30 to 120 m2/g and a relative thickening effect ηrel of 1.4 to 10, and (C) at least one hydrocarbon component which has an initial boiling point above 150° C., a final boiling point below 350° C., each at a pressure of 1013 hPa, a kinematic viscosity of 1.5 to 6.0 mm2/s as measured at 40° C., a viscosity-density constant (VDC) of less than or equal to 0.820, a pour point of less than −5° C., and an aromatic carbon atom (CA) content of less than 0.1% CA.