Abstract:
The present invention describes a method for the production of liquid biogas (LBG), said method comprising the following steps:—inflow of crude gas comprising mainly methane and carbon dioxide;—removal of trace elements like hydrogen sulphide, siloxanes and VOC's from the crude gas;—dehumidification;—particle purification; for the production of a treated biogas; separation of carbon dioxide from the treated biogas;—condensation of the treated biogas with a low content of carbon dioxide, for the production of LB G with a carbon dioxide content of maximum 100 ppm, preferably at or close to atmospheric pressure the LB G is lose to 100% pure methane with a carbon dioxide content of maximum 100 ppm, wherein the separation of carbon dioxide from the treated biogas involves freezing carbon dioxide in the treated biogas.
Abstract:
The present invention provides a composition comprising 8-30 mass % of C4-12 linear alkanes, 5-50 mass % of C4-12 branched alkanes, 25-60 mass % of C5-12 cycloalkanes, 1-25 mass of C6-12 aromatic hydrocarbons, no more than 1 mass % of alkenes, and no more than 0.5 mass % in total of oxygen-containing compounds; wherein the total amount of C4-12 alkanes is 40-80 mass %, and the total amount of C4-12 alkanes, C5-12 cycloalkanes and C6-12 aromatic hydrocarbons is at least 95 mass %; and wherein the amounts are based on the mass of the composition. Also provided is a method for producing the composition comprising the step of hydroprocessing a biological feedstock using a catalyst and the step of fractionating the product of the hydroprocessing step.
Abstract:
A fuel refinery system comprising a particulate filter adapted to remove particulates from fuel flowing through the fuel conduction system, a water filter adapted to remove water from fuel flowing through the fuel conduction system following its passage through the particulate filter, a magnetic field of sufficient strength to further refine the fuel flowing through the fuel conduction system following its passage through the water filter, a catalyst injector configured to inject the catalyst from a catalyst tank into the fuel flowing through the fuel conduction system following its passage through the magnetic field, a dispensing conduit configured to conduct the fuel from the fuel refinement apparatus following injection of the catalyst.
Abstract:
Haze may be removed from a biofuel or biofuel intermediate by using a clarifier. The clarifier includes copolymer prepared using a formulation comprising an alpha olefin and maleic anhydride. The clarifier may also be used with admixtures of biofuels, biofuel intermediates, or biofuel feedstocks with conventional hydrocarbons.
Abstract:
Disclosed are automated methods and systems for certifying the volatility of butane-enriched gasoline downstream of a butane blending operation. Such automated methods and systems provide significant advantages to comply with volatility requirements imposed by EPA or state regulations.
Abstract:
A system and method are provided for in-line processes of blending butane into gasoline streams, and for blending butane into a gasoline stream at any point along a petroleum pipeline. The invention additionally provides a method for measuring the vapor pressure and vapor to liquid ratio of the gasoline, both upstream and downstream of the blending operation, as well as the sulfur content of the butane entering the blending operation. The blending operation can be controlled to ensure that the blended gasoline meets EPA requirements for vapor pressure and sulfur content of gasoline. The invention further provides a method for accessing and monitoring the operation off-site.
Abstract:
High octane unleaded aviation gasoline having low aromatics content and a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa and a freezing point of less than −58° C. is provided.
Abstract:
Disclosed are automated methods and systems for certifying the volatility of butane-enriched gasoline downstream of a butane blending operation. Such automated methods and systems provide significant advantages to comply with volatility requirements imposed by EPA or state regulations.
Abstract:
A system and method are provided for in-line processes of blending butane into gasoline streams, and for blending butane into a gasoline stream at any point along a petroleum pipeline. The invention additionally provides a method for measuring the vapor pressure and vapor to liquid ratio of the gasoline, both upstream and downstream of the blending operation, as well as the sulfur content of the butane entering the blending operation. The blending operation can be controlled to ensure that the blended gasoline meets EPA requirements for vapor pressure and sulfur content of gasoline. The invention further provides a method for accessing and monitoring the operation off-site.
Abstract:
The invention relates to butanol compositions for fuel blending and fuel blends comprising such compositions. The compositions and fuel blends of the invention have desirable performance characteristics and can serve as alternatives to ethanol-containing fuel blends. The invention also relates to methods for producing such butanol compositions and fuel blends.