Abstract:
An addressable display comprises a woven article including functional yarn woven therein, each functional yarn having an addressable device for controlling display elements thereon. Addressing signals applied via conductive yarn of the woven article address the addressable devices of the functional yarn for selectively energizing the display elements.
Abstract:
The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.
Abstract translation:本发明一般涉及依赖于衬底环境的有用的,自动适应的表面能特性的衬底。 当与目标基板表面接触时,这种表面能量特性为液体提供相对高的前进和后退接触角。 基材在约25℃的温度下表现出低至多约20毫焦耳/平方米(mJ / m 2)的表面能,而表面能大于约20mJ / m 2,或 暴露于约40℃的温度。更具体地,本发明中包括具有这种非常理想的独特表面能改性性能的织物基材,并且其具有耐洗涤耐油和防水性和脱色特性。 赋予基质的这种表面能改变的新型组合物和制剂也包括在本发明内,以及生产这种处理过的基材的方法。
Abstract:
A textile made at least in part with conductive yarns for the purpose of generating heat from an electrical power source. The textile has conducting yarns, or “heaters”, with conductivity and spacing tailored to the electrical source to be used and the heat to be generated. The heater yarns have a positive temperature coefficient whereby the resistance of the yarn increases with an increase in temperature and decreases with a decrease in temperature. “Leads”, such as conductive yarns, can be used to supply electricity to the heater yarns. A coating to the textile can electrically insulate the textile as well as provide protection to the textile during activities such as laundering or use.
Abstract:
A textile made at least in part with conductive yarns for the purpose of generating heat from an electrical power source. The textile has conducting yarns, or nullheatersnull, with conductivity and spacing tailored to the electrical source to be used and the heat to be generated. The heater yarns have a positive temperature coefficient whereby the resistance of the yarn increases with an increase in temperature and decreases with a decrease in temperature. nullLeadsnull, such as conductive yarns, can be used to supply electricity to the heater yarns. A coating to the textile can electrically insulate the textile as well as provide protection to the textile during activities such as laundering or use.
Abstract:
Composite coating (10) improves the resistance to blast or seismic forces of a structure (100), such as wall (101). Coating (10) includes a first layer (20) of elastomeric polyurethane in contact with and adhering to wall (101), a second layer (30) of elastomeric polyurethane in contact with and adhering to first layer (20), and a layer of textile (40) embedded between first layer (20) and second layer (30).
Abstract:
The present invention is directed to new chenille yarns and methods of making the same. The present invention is further directed to new chenille yarns having a spun core containing low-melting staple-length binder fibers and methods of making the same. The chenille yarns may be used on conventional weaving equipment, including air jet and water jet weaving machines, to produce simulated pile fabrics having superior abrasion resistance and improved hand. The present invention is, also directed to methods of making fabrics containing the chenille yarn, and various uses for the fabrics, especially as residential upholstery fabrics, decorative throws, contract fabrics, automotive fabrics, and bedding fabrics for use in the home.
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes "nicking" the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the "nicking" of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
A woven fabric is made of warp threads and weft threads. The warp threads have a different composition than the weft threads and at least one of the warp threads or weft threads is comprised of a multifilament fibre. The fabric is colored after it is manufactured by preferentially coloring the warp threads with a dyestuff which is preferentially taken up by the warp threads, but substantially repelled by the weft threads, and a different dyestuff which is preferentially taken up by the weft threads and substantially repelled by the warp threads. The resulting fabric can exhibit the shot silk effect.