Abstract:
The present invention provides a fabric comprising or consisting of: a first yarn comprising a fiber blend of modal and polyester; a second yarn comprising spandex; and a third yarn comprising polyester. The polyester in the fiber blend may have a cross-section such as X-shape, M-shape, I-shape, honeycomb-shape, Y-shape, U-shape or O-shape that creates a plurality of spaces along the length of the first yarn that facilitate a capillary action. The modal in the fiber blend may have a cross-section that is substantially rectangular.
Abstract:
A device and a method for producing a nonwoven product from fibres laid randomly in the air flow, especially cellulose fibres, and the resultant nonwoven product, in which a fibre material comprising fibres in bonded form is frayed in at least one mill and the resulting fibres are delivered in an air flow from the at least one mill to at least one depositing sieve and laid randomly on the at least one depositing sieve such that the nonwoven product is formed on the at least one depositing sieve, wherein a fibre material is broken down in a pre-shredding device into a pre-shredded fibre material deliverable in an air flow and there is provided a buffer storage to form a pre-shredded fibre material-stockpile from which pre-shredded fibre material is removed and delivered in an air flow to the at least one mill.
Abstract:
Embodiments of the present invention relate to flame resistant fabrics formed with inherently flame resistant fibers that provide the requisite thermal and arc protection, that have improved comfort, and that, in some embodiments, are less expensive than other fabrics formed with inherently flame resistant fibers. Improved comfort and lower cost can be achieved by predominantly locating the inherently flame resistant fibers on the front face of the fabric to impart the requisite thermal and arc protection and predominantly locating the more comfortable (and less expensive) fibers on the back face of the fabric positioned next to the wearer. In this way, overall protection of the fabric is maintained while improving comfort. Some embodiments of such fabrics may also achieve NFPA 70E PPE Category 2 protection.
Abstract:
Nonwoven fabrics including a first spunmelt through-air-bonded (TAB) nonwoven layer comprising a first plurality of spunmelt fibers, in which the first plurality of spunmelt fibers comprise a biopolymer. The first plurality of spunmelt fibers may be physically entangled with cellulosic fibers, such by hydroentangling. Methods of forming a nonwoven fabric including a first spunmelt TAB nonwoven layer are also provided.
Abstract:
A terry article includes a ground component including a plurality of ground warp yarns and a plurality of ground weft yarns interwoven with the plurality of ground warp yarns. The ground component includes a second side and a first side opposed to the second side along a vertical direction, as well as a pile component extending away from the ground component along the vertical direction. The pile component includes a plurality of plied yarns, where each of the plied yarns includes 1) a first yarn that has a first yarn count, and 2) a second yarn that has a second yarn count that is greater than the first yarn count. The second yarn includes regenerated cellulose fibers.
Abstract:
Unique blends of fibers that incorporate synthetic cellulosic fibers to render fabrics made with such blends more durable than fabrics made with natural cellulosic fibers such as cotton. While more durable than cotton, the synthetic cellulosic fibers used in the blends are still inexpensive and comfortable to the wearer. Thus, the benefits of cotton (affordability and comfort) are still attained while a drawback of cotton—low durability—is avoided. In one embodiment, the fiber blend includes FR modacrylic fibers and synthetic cellulosic fibers, preferably, but not necessarily non-FR lyocell fibers such as TENCEL™ and TENCEL A100™. Other fibers may be added to the blend, including, but not limited to, additional types of inherently FR fibers, anti-static fibers, anti-microbial fibers, stretch fibers, and/or high tenacity fibers. The fiber blends disclosed herein may be used to form various types of FR fabrics. Desired colors may be imparted in a variety of ways and with a variety of dyes to the fabrics disclosed herein. Fabrics having the fibers blends disclosed herein can be used to construct the entirety of, or various portions of, a variety of protective garments for protecting the wearer against electrical arc flash and flames, including, but not limited to, coveralls, jumpsuits, shirts, jackets, vests, and trousers.
Abstract:
Unique blends of fibers that incorporate synthetic cellulosic fibers to render fabrics made with such blends more durable than fabrics made with natural cellulosic fibers such as cotton. While more durable than cotton, the synthetic cellulosic fibers used in the blends are still inexpensive and comfortable to the wearer. Thus, the benefits of cotton (affordability and comfort) are still attained while a drawback of cotton—low durability—is avoided. In one embodiment, the fiber blend includes FR modacrylic fibers and synthetic cellulosic fibers, preferably, but not necessarily non-FR lyocell fibers such as TENCEL™ and TENCEL A100™. Other fibers may be added to the blend, including, but not limited to, additional types of inherently FR fibers, anti-static fibers, anti-microbial fibers, stretch fibers, and/or high tenacity fibers. The fiber blends disclosed herein may be used to form various types of FR fabrics. Desired colors may be imparted in a variety of ways and with a variety of dyes to the fabrics disclosed herein. Fabrics having the fibers blends disclosed herein can be used to construct the entirety of, or various portions of, a variety of protective garments for protecting the wearer against electrical arc flash and flames, including, but not limited to, coveralls, jumpsuits, shirts, jackets, vests, and trousers.
Abstract:
An article comprising a fabric comprising: (a) a blended yarn comprising: (i) from about 10% to about 85% by weight of at least one biregional fiber comprising an oxidized polymer selected from the group consisting of acrylonitrile based homopolymers, acrylonitrile based copolymers, acrylonitrile based terpolymers, and combinations thereof; (ii) at least one companion fiber selected from the group consisting of FR polyester, FR nylon, FR rayon, FR treated cellulose, m-aramid, p-aramid, modacrylic, novoloid, melamine, wool, nylon, regenerated cellulose, polyvinyl chloride, antistatic fiber, poly(p-phenylene benzobisoxazole) (PBO), polybenzimidazole (PBI), polysulphonamide (PSA), and combinations thereof; and (b) optionally including a companion yarn different from said blended yarn; wherein said companion yarn includes p-aramid in an amount less than 20% of the fabric weight; and wherein the fabric has a weight from about 3 oz/yd2 to about 12 oz/yd2.
Abstract:
A unique blend of fibers used to create a yarn or fabric useful in protective garments including a lyocell fiber, and a flame resistant fiber that is not a modacrylic and/or does not require the emission of gases and/or acids for flame resistance. The lyocell fiber is approximately 5% to 55% of the blend, and the flame resistant fiber is approximately 45% to 95% of the blend. The resulting fabric requires no post treatment for flame resistance.
Abstract:
A method for the manufacture of fibrous yarn includes providing an aqueous suspension formed from fibers and at least one rheology modifier; directing the aqueous suspension through at least one nozzle, to form at least one yarn, and subjecting said yarn to dewatering. The at least one nozzle can have an inner diameter of an outlet smaller than or equal to a maximum length weighed fiber length of the fibers.