Abstract:
A spindle drive for a movable component includes a threaded spindle which is rotatable about a spindle axis; a spindle nut which engages the threaded spindle; and a transmission element which can be connected to the movable component, the transmission element being fixed against rotation about the spindle axis and being axially drivable by rotation of the spindle nut. An intermediate element, which is fixed against rotation relative to the spindle nut, extends axially with respect to the threaded spindle and is rotatable relative to the threaded spindle. A drive is connected to rotate one of the intermediate element and the threaded spindle; and the other of the intermediate element and the threaded spindle can be fixed against rotation.
Abstract:
A control apparatus for opening/closing a vehicle door includes a door opening/closing mechanism for operating the vehicle door, a driving source for driving the door opening/closing mechanism, a connecting/disconnecting apparatus interposed between the door opening/closing mechanism and the driving source, and a controlling apparatus for controlling the connecting/disconnecting apparatus. The controlling apparatus for opening/closing the vehicle door includes a door movement-detecting apparatus for detecting a movement of the vehicle door. The controlling apparatus switches the connecting/disconnecting apparatus from a connected state to a disconnected state when the driving source is stopped during in an opening/closing operation of the vehicle door. The controlling apparatus performs a repetition mode, in which the connecting/disconnecting apparatus repeats the connected state and the disconnected state, when the movement of the vehicle door is detected in the disconnected state of the connecting/disconnecting apparatus.
Abstract:
A drive unit for a power operated vehicle closure has a track, a guide moveable along the track, a link attached to the guide at one end and adapted to be attached to the vehicle closure at the opposite end, and a motor assembly for moving the guide along the track. The motor assembly has an electric motor and a speed reducer driven by the electric motor that has a first stage and a second stage. The first stage includes a belt drive and the second stage is a spur gear set. Alternatively the first stage is a worm gear and a mating helical gear. The worm gear preferably has a high lead angle and a high number of leads. The speed of the electric motor is reduced to about 1000 rpm or less in the first stage permitting the use of spur gears in the second stage while retaining quiet operation.
Abstract:
A mechanism includes a movable member and a reluctance motor having an armature, a coil and two pole pieces, the armature being operably coupled to the movable member. The mechanism also has a first condition in which the reluctance motor is powered and the moveable member engages the pole pieces to magnetically hold the moveable member in a first position and a second condition in which the reluctance motor is unpowered and the moveable member is in a second position disengaged from the pole pieces. With the mechanism in the second position, powering of the reluctance motor causes the armature to rotate to drive the moveable member to the first position.
Abstract:
A power unit 16 includes an armature 38 rotated always in unison with a cable drum 17 and movable in an axial direction of a drum shaft 25, a flange 39 always connected to a motor 28 side, and a magnetic coil portion 37 bringing the armature 38 into abutment against the flange 39. The armature is disposed adjacent to a side of the drum rim body 23 of the cable drum 17, the magnetic coil portion 37 is disposed on the other side of the armature 38, and the flange 39 is disposed between the magnetic coil portion 37 and the armature 38.
Abstract:
A system for operating an automotive liftgate includes a motor drive adapted for positioning the liftgate, and at least one telescopic strut positioned between the liftgate and an adjacent body structure. A controller operates the motor drive so as to place the liftgate in a predetermined position, such as a fully closed or fully opened position, in the event that a sensor detects unintended movement of the liftgate.
Abstract:
Under a method to control a sliding speed in accordance with this invention, the motor is initially accelerated for a predetermined reference speed, and then during the initial acceleration period, if a rotational speed of the wire drum is of and above a given value, a difference between a rotational speed of the wire drum and a rotational speed of the motor is of and above a given value, and a rate of acceleration of the wire drum is of and above a given value, the rotational speed of the motor is reduced temporarily judging the slide door is in a state of abnormal acceleration, and then the motor is accelerated again at a lower rate than the initial acceleration toward the reference speed.
Abstract:
A drive mechanism is provided for a door operator, comprising a drive member and a driven member. The drive member includes a protrusion, the edges of the protrusion forming first and second driving surfaces which define a free space of at least about 90° there between. The driven member includes a protrusion, the sides of the protrusion form a first and a second driven surface, respectively. The drive member is adapted to be operably connected to between a motor assembly for rotating the drive member and a door closer assembly rotating with the driven member. The drive member and the driven member are disposed for relative rotation in substantially the same plane such that the driven member protrusion moves in the free space defined by the driving surfaces of the drive member protrusion. Rotation of the drive member from a first angular orientation to a second angular orientation in a direction toward an adjacent driven surface causes rotation of the driven member for powered opening of the door from the closed position to the open position. The driven member protrusion moves in the free space without engaging the protrusion surfaces when the door is opened manually from the closed position and allowed to close.
Abstract:
The invention pertains to a method of motorized movement of a vehicle door, wherein the vehicle door can be moved from an open position to a closed position as part of a closing process, wherein a door drive mechanism associated with the vehicle door and a control system are provided, wherein the vehicle door can be moved in the direction of closing starting from the open position using the door drive mechanism. It is proposed that in a first section of the closing process the vehicle door is moved by the door drive mechanism from the open position to a comfortable open position that lies between the open position and the closed position, and that in a second section of the closing process, the vehicle door is further moved from the comfortable open position in the direction of closing, preferably to the closed position, manually by the user and largely free of the door drive mechanism.
Abstract:
An automatic door opener (10) for opening or closing a door (28) includes a motor (14) driving a drive shaft (50) and an opener arm (18) connected to the door (28) and being responsive to rotation of the drive shaft (50) for moving the door (28) to an open or closed position. A clutch (46) operable to disengage the drive shaft (50) from the opener arm (18) is provided in the event of the door (28) engaging an obstacle, electric power being unavailable, or the door being fully open or fully closed. The door opener (10) may also include a brake (48) for selectively preventing movement of the door (28). Various embodiments of the invention are provided, including an electromagnet (80) and an electromagnetic brake (114).