Abstract:
A valve actuator system is capable of operating a number of valves with a single cam. The system includes a power shaft, a cam mounted around the power shaft and a gear train to drive the cam when the shaft rotates. Hydraulic actuator assemblies corresponding to the number of valves are radially positioned around the shaft axis for operation by the cam. Hydraulic tubes connect each actuator to a valve follower disposed adjacent to the respective valves. The cam profile pressing each actuator plunger in sequence as the cam rotates causes the hydraulic fluid to flow out of the actuator assembly, through the like-numbered pipe, and into the like-numbered follower assembly, which in turn causes the follower plunger to move the like-numbered valve from an open position or a closed position. This occurs sequentially for each valve.
Abstract:
A number of variations may include a product comprising a flexible member for an electric phaser actuator comprising: a plate, wherein the plate comprises a body; wherein the body has a thickness which is less than a width and a height of the body and wherein the body is constructed and arranged to attach to an output gear of an electric phaser actuator and wherein the body is constructed and arranged to mate with an input gear on a camshaft phaser.
Abstract:
A camshaft phaser is provided for controllably varying the phaser relationship between a crankshaft and a camshaft in an internal combustion engine which includes a camshaft bearing for supporting the camshaft and which defines a mounting bore for mounting the camshaft phaser to the internal combustion engine. The camshaft phaser includes a housing with a gear drive unit disposed within the housing. The gear drive unit includes an input gear member and an output gear member such that the input gear member is attachable to the crankshaft and such that the input gear member is attached to an output shaft of an electric motor. The output gear member is attachable to the camshaft such that rotation of the input gear member by the electric motor causes relative rotation between the crankshaft and the camshaft. The camshaft phaser is disposed between the mounting bore and the camshaft bearing.
Abstract:
A split ring planetary drive for an engine or use with an electric phaser. The split ring planetary drive includes a sun gear, a plurality of planet gears, a spring ring gear, a camshaft ring gear, and at least one spring. The sun gear has teeth and is driven to rotate around a sun axis. The plurality of planet gears are arranged around the sun gear with each planet gear comprised of planet teeth maintaining the planet gear in meshing engagement with the sun gear teeth. The sprocket ring gear has teeth and is driven by a crankshaft. The camshaft ring gear has teeth is rotatable with a camshaft. The teeth of the sprocket and camshaft ring gears maintain the ring gears in meshing engagement with each of the planet gears. The spring biases the planet gear teeth into meshing engagement with the sprocket and camshaft ring gear teeth.
Abstract:
A method for operating a camshaft adjuster, which includes an adjusting transmission with an input shaft, an output shaft connected in a non-rotatable manner with a camshaft, and an adjusting shaft, whereby the adjusting shaft is driven by an actuator, characterized by the fact that the actuator drives the adjusting shaft by overcoming a torque that is dependent on its angular position.
Abstract:
A camshaft assembly, including a camshaft phaser with: stator; rotor including first plurality of circumferentially aligned ramps; and second plurality of circumferentially aligned ramps offset from the first plurality of ramps in a first axial direction; first and second wedge plates radially disposed between the rotor and the stator; and camshaft non-rotatably connected to the rotor. In a drive mode: the stator is arranged to receive first torque and to rotate in a first direction; the assembly is arranged to operate in successive cycles of a first phase followed by a second phase; in the first phase the first wedge plate non-rotatably connects the stator and the rotor while the second wedge plate is rotatable with respect to the stator; and in the second phase, the second wedge plate non-rotatably connects the stator and the rotor while the first wedge plate is rotatable with respect to the stator.
Abstract:
A camshaft phase adjuster assembly is provided that includes at least one helical groove for adjusting a phase position between a camshaft and a drive sprocket. The camshaft phase adjuster assembly includes a camshaft including at least one helical groove extending between a bore and a radially outer surface of a sprocket support portion, and the helical groove includes circumferentially offset first and second ends. A drive sprocket includes at least one axially extending drive sprocket groove on a radially inner surface of the drive sprocket arranged facing the at least one helical groove. An actuator selectively moves an actuator pin axially such that a radially extending rotation pin slides within the helical groove and the drive sprocket groove from a first phase position to a second phase position.
Abstract:
An internal combustion includes a crankshaft and a camshaft rotatable by the crankshaft. The internal combustion engine also includes an oil source, an engine cover, and a drive member disposed within the engine cover for transferring rotational motion from the crankshaft to the camshaft. A camshaft phaser actuated by an electric motor is disposed within the engine cover for controllably varying the phase relationship between the crankshaft and the camshaft. A supply passage communicates oil from the oil source to the camshaft phaser in order to lubricate the camshaft phaser and a drain passage drains oil from the camshaft phaser to the oil source. A sealing arrangement defines a dry zone within the engine cover to isolate the drive member from oil used to lubricate the camshaft phaser. The sealing arrangement includes an electric motor to camshaft phaser seal to seal between the electric motor and the camshaft phaser.
Abstract:
A valve timing control device of internal combustion engine comprises a chain case 6 that is fixed to a cylinder head 101 of the engine and has a circular opening 55 for receiving therein a cylindrical housing 5a of an electric motor 8, an annular seal member 58 that is operatively received in an annular clearance defined between an outer cylindrical wall of the cylindrical housing 5a and an inner cylindrical wall of the circular opening 55, and a cover member 4 that is connected to the chain case 6 to cover the circular opening thereby concealing the annular seal member from the outside, wherein when the cover member 4 is removed from the chain case 6, the annular seal member 58 becomes exposed to the outside through the circular opening 55 of the chain case 6 for a visual inspection of the annular seal member.
Abstract:
The present invention provides a valve timing control device that can suppress a leakage of noise to the outside of the device and can improve reliability without needlessly increasing the volume occupied by the device. There is provided a valve timing control device for an internal combustion engine, including a driving rotary body to which rotational force from a crankshaft is transmitted, a driven rotary body, an intermediate rotary body, a speed reduction mechanism, an electric motor, and a housing, wherein: the electric motor rotates relative to the camshaft and the housing; the valve timing control device further includes a current application switching mechanism which is provided inside the housing and which includes brushes to switch current application to a coil of the electric motor, and feeding mechanisms which are provided between the housing and an external device and which include brushes to apply a current from the external device to the current application switching mechanism; electromagnetic noise emission suppression means is provided on the power supply side of the brushes of the feeding mechanisms; and the brushes of these mechanisms are disposed apart from the rotational axis of the camshaft by substantially the same distance.