Abstract:
A catalytically active diesel particulate filter with ammonia trap action is presented, which, in addition to an oxidation-active coating (2), comprises a coating (1) which is catalytically active in the SCR reaction. By means of this inventive diesel particulate filter, it is possible to make exhaust gas aftertreatment systems for removing nitrogen oxides and particulates from the exhaust gas of lean engines considerably simpler and less expensive.
Abstract:
An exhaust gas catalytic converter is laden with oxygen until it is saturated at least upstream of an exhaust gas probe. A predefined first rich air/fuel ration is set in a combustion chamber of a cylinder. A first oxygen storage capacity value is determined as a function of the measurement signal of an exhaust gas probe and the predefined first rich air/fuel ratio. The exhaust gas catalytic converter is laden with oxygen until it is saturated. A predefined second rich air/fuel ration is set in the combustion chamber of the cylinder. A second oxygen storage capacity value is determined as a function of the measurement signal of the exhaust gas probe and the predefined second rich air/fuel ration. A corrected oxygen storage capacity value is determined as a function of the first and second oxygen storage capacity values.
Abstract:
A diesel engine exhaust treatment system and method is provided which includes a platinum group metal trapping device positioned between a diesel oxidation catalyst and an SCR catalyst. The platinum group metal trapping device traps trace amounts of platinum group metals which may be released from the diesel oxidation catalyst during engine operation and prevents them from accumulating on the SCR catalyst, preventing potential contamination of the SCR catalyst as well as ensuring that the performance of the SCR catalyst is uninhibited.
Abstract:
An apparatus comprises an emissions trap and a trap regenerator fluidly coupled to the emissions trap to advance a regenerative agent thereto to regenerate the emissions trap. The trap regenerator is configured to change a concentration of the regenerative agent advanced to the emissions trap from a first trap-regenerating level to a second trap-regenerating level different from the first trap-regenerating level. An associated method is disclosed.
Abstract:
In a method for the control of the supplied air/fuel ratio of an internal combustion engine (1) with a catalytic converter (5) which is located in the exhaust gas line (2) with an integrated oxygen reservoir (6), it is suggested that the air/fuel ratio be controlled as a function of at least one parameter of the internal combustion engine (1), at least one parameter of the catalytic converter (5), and/or as a function of the type and amount of the exhaust gas emissions currently occurring, in order to optimize the speed for adjustment of the admission or discharge of oxygen in the oxygen reservoir (6) contained in the catalytic converter (5) for favorable conversion of the exhaust gas emissions during transient operation of the internal combustion engine (1) and after deviations from the air/fuel ratio λ=1. As claimed in the invention, a “disturbance” of the exhaust gas composition which occurs during transient operation of the internal combustion engine (1) is corrected with a speed which takes into account both the current conversion demand by the catalytic converter (5) and also the current conversion performance of the catalytic converter (5) and thus makes possible improved overall exhaust gas conversion.
Abstract:
An exhaust gas purifying apparatus for an internal combustion engine having an exhaust system. The exhaust gas purifying apparatus includes a NOx purifying device provided in the exhaust system for purifying NOx in exhaust gases, and a temperature sensor for detecting a temperature of the NOx purifying device. The NOx purifying device has NOx adsorbing capacity and generates ammonia and retains the generated ammonia when the air-fuel ratio is set to a value on the rich side with respect to the stoichiometric ratio. The NOx purifying device purifies NOx with the retained ammonia when the air-fuel ratio is set to a value on a lean side with respect to the stoichiometric ratio. The air-fuel ratio is enriched to a value on the rich side with respect to the stoichiometric ratio so as to increase an amount of reducing components in the exhaust gases flowing into the NOx purifying device.
Abstract:
An air-fuel ratio control apparatus estimates, on the basis of an exhaust air-fuel ratio of exhaust gas flowing into an exhaust purifying catalyst unit disposed in an exhaust passage of an engine, an emission of at least one specific component contained in exhaust gas flowing out of the exhaust purifying catalyst unit. The air-fuel ratio control apparatus performs the estimation by use of a model, and controls the air-fuel ratio in such a manner that the estimation value reaches a target state. The model is previously determined in consideration of the mass balance of the specific component.
Abstract:
An exhaust gas purifying apparatus for an internal combustion engine having an exhaust system. The exhaust gas purifying apparatus includes a NOx purifying device provided in the exhaust system for purifying NOx in exhaust gases, and a temperature sensor for detecting a temperature of the NOx purifying device. The NOx purifying device has NOx absorbing capacity and generates ammonia and retains the generated ammonia when the air-fuel ratio is set to a value on the rich side with respect to the stoichiometric ratio. The NOx purifying device purifies NOx with the retained ammonia when the air-fuel ratio is set to a value on a lean side with respect to the stoichiometric ratio. The air-fuel ratio is enriched to a value on the rich side with respect to the stoichiometric ratio so as to increase an amount of reducing components in the exhaust gases flowing into the NOx purifying device.
Abstract:
Disclosed are a hydrocarbon adsorption and desorption complex showing hydrocarbon adsorption and oxidation performance by controlling the cation ratio in zeolite, and a preparation method therefor. The hydrocarbon adsorption and desorption complex controls a cation ratio to exhibit the excellent hydrocarbon adsorption ability and oxidation performance even at a temperature lower than the catalyst activation temperature, and increases hydrothermal stability of the hydrocarbon adsorption and desorption complex through hydrothermal treatment to exhibit the excellent hydrocarbon adsorption and desorption performance even in a situation where water is present at a high temperature.