Abstract:
The present invention generally provides apparatus and methods of operating a pumping system. The pump control apparatus includes a first sensor for measuring strain on a structure of the well pumping system and a second sensor for measuring a position of the structure. The apparatus also has a controller configured to control the well unit by receiving output signals from the first and second sensors and generating control signals according to a motor control sequence. This controller may be mounted to the structure of the pumping system to measure the strain experienced by the structure. The control signals may be transmitted to a motor control panel using a cable-less communications system. Preferably, the first sensor, the second sensor, and the controller are integrated into a single unit. In another embodiment, the pump control apparatus may be self-powered.
Abstract:
Rod Float Mitigation (RFM) methods for rod-pumped oil wells having a variable frequency drive which controls the speed of the motor for the pump. Each method monitors rod loads or a similar condition and takes action only when rod load drops below a predefined minimum load. A first method reduces the speed of the motor to a preset level. A second method fixes the torque level on the pump downstroke by adjusting motor speed based on a calculated gearbox torque compared to a programmed fixed limit. Another method includes a program in the variable frequency drive which includes a preferred RFM Torque Curve for the pump to follow on its downstroke. When rod float occurs, the program monitors gearbox torque and adjusts the speed to follow the predetermined RFM Torque Curve thereby mitigating rod float with minimum decrease in production.
Abstract:
A rod-pump control device is disclosed. The rod-pump control device uses AMP (current) measurements for electric units, fuel or air usage for gas units, and can use pressure for either unit. The AMP/fuel/air sensors work as the primary trigger to indicate a pump-off condition on an oil and gas well. These sensors can be used as stand-alone triggers or in conjunction with other sensors to more accurately monitor pump efficiency. When the pump-controller starts to indicate an inefficient pump condition, it will turn the pump off by removing power from the electric motor. For gas powered units, the controller will remove power to disengage an electric clutch or send a signal to an engine controller to stop. An adjustable algorithm will use percentage change of off time, dependent on actual run time compared to a user definable target time to keep the pump operating at peak efficiency.
Abstract:
A lift apparatus and method for driving a downhole reciprocating pump is disclosed and includes a hydraulic cylinder having a piston and a hydraulic fluid port, the piston being coupled to a rod for driving the reciprocating pump, the piston being moveable between first and second ends of the cylinder in response to a flow of hydraulic fluid through the hydraulic fluid port. A variable displacement hydraulic pump is responsive to a displacement control signal to draw hydraulic fluid from a reservoir and to produce a controlled flow of hydraulic fluid at the outlet. The apparatus also includes a valve connected between the hydraulic fluid port and the reservoir, the valve being responsive to a valve control signal for controlling discharge of hydraulic fluid from the hydraulic fluid port of the cylinder back to the reservoir to facilitate movement of the piston through a downstroke away from the second end toward the first end of the cylinder. The apparatus further includes a first sensor located proximate the first end of the cylinder and operable to produce a first signal indicating a proximity of the piston to the first sensor, a second sensor located proximate the second end of the cylinder and operable to produce a second signal indicating a proximity of the piston to the second sensor, and a controller operably configured to generate the displacement control signal and the valve control signal in response to receiving the first signal and the second signal.
Abstract:
An adapter for a load cell in a rod pump system includes an outer shell including a mounting portion configured to attach to the load cell on a polished rod, a power supply configured to provide power to the adapter and the load cell, the power supply including a solar panel on the outer shell, a cable configured to connect to the load cell, the adapter configured to provide power to the load cell via the cable, and the adapter configured to receive a load signal from the load cell via the cable, a signal processor configured to receive and process the load signal and to output load signal data representative of a load experienced by the load cell, and a wireless transmitter to transmit the load signal data.
Abstract:
Diagnosing a pump apparatus having a downhole pump disposed in a deviated wellbore characterizes axial and transverse displacement of a rod string with two coupled non-linear differential equations of fourth order, which include axial and transverse equations of motion. To solve the equations, derivatives are replaced with finite difference analogs. Initial axial displacement of the rod string is calculated by assuming there is no transverse displacement and solving the axial equation. Initial axial force is calculated using the initial axial displacement and assuming there is no transverse displacement. Initial transverse displacement is calculated using the initial axial force and the initial axial displacement. Axial force and friction force are calculated using the initial displacements, and the axial displacement at the downhole pump is calculated by solving the axial equation with the axial force and the friction force. Load at the downhole pump is calculated so a downhole card can be generated.
Abstract:
A controller for operating a rod pumping unit at a pump speed. The controller includes a processor configured to operate a pump piston of the rod pumping unit at a first speed. The processor is further configured to determine a pump fillage level for a pump stroke based on a position signal and a load signal. The processor is further configured to reduce the pump speed to a second speed based on the pump fillage level for the pump stroke.
Abstract:
A pump apparatus has a downhole pump disposed in a wellbore and has a motor at the surface, and a rod string operatively moved by the motor reciprocates the downhole pump in the wellbore. Downhole data indicative of load and position of the downhole pump is generated using surface measurements and a wave equation model having an upstroke damping factor and a downstroke damping factor. Actual fluid load lines are determined from the downhole data for upstrokes and downstrokes of the downhole pump, and calculated fluid load lines for from the strokes are determined from the distribution of the load values in the downhole data. The actual fluid load lines are compared to the calculated fluid load lines to determine if the downhole card is over or under-damped. Then, at least one of the upstroke or downstroke damping factors of the wave equation model is adjusted so that new downhole data can be generated with appropriate damping.
Abstract:
It is an object of the invention to provide a pump jack pump-off control method and a pump jack control apparatus in which, even when the speed of a pump jack is reduced due to generation of a pump-off condition, the pump jack is not caused to stop due to the motor overload abnormality or the coagulated crude oil and, even when the pump-off condition is generated, the reduction of the production capacity of the pump jack can be prevented as much as possible. On detecting the pump-off condition, while the pump jack is in operation with the speed thereof being reduced, or while the pump jack is in operation at the lowest speed, according to the overload warning signal of an ac electric motor, the pump jack is switched over to its intermittent operation. Also, the pump jack can be operated in such a manner that the stroke speed of the pump jack in the up stroke operation can be switched from a sinusoidal wave form over to a rectangular wave form, or, in the operation of the pump jack by an inverter, the pump jack can be operated such that it can carry out its up stroke operation with a limit imposed on torque.
Abstract:
A method and system for pumping unit with an elastic rod system is applied to maximize fluid production. The maximum stroke of the pump and the shortest cycle time are calculated based on all static and dynamic properties of downhole and surface components without a limitation to angular speed of the prime mover. Limitations of structural and fatigue strength are incorporated into the optimization calculation to ensure safe operation while maximizing pumped volume and minimizing energy consumption. Calculated optimal prime mover speed is applied to the sucker rod pump by means of beam pumping, long stroke or hydraulic pumping unit by controlling velocity, acceleration and torque of the electric prime mover or by controlling pressure and flow rate in hydraulically actuated sucker rod pumping system.