Abstract:
A variable displacement compressor in which variable control of displacement is effected through adjustment of a crank chamber pressure, includes: a suction port; a suction chamber; a suction passage establishing communication between the suction port and the suction chamber; and an opening control valve arranged in the suction passage and adapted to adjust the opening of the suction passage based on a pressure difference between a suction pressure in the suction port and the crank chamber pressure.
Abstract:
A problem determination device for a fluid device includes an object sensor for detecting an undesirable object in the fluid device and a determining section. The object sensor includes a detecting portion provided in the fluid device. The determining section determines that the fluid device has a problem when the object sensor detects an undesirable object. The problem determination device is capable of accurately determining that the fluid device has a problem at a relatively early stage of the problem.
Abstract:
A motor-driven compressor for compressing a refrigerant in an air conditioning system includes an electric motor, a swash plate-type compression unit driven by the electric motor, and a cooling channel for returning the refrigerant used by the air conditioning system to a suction chamber of the compression unit. The cooling channel has an upstream section including an armature chamber of the electric motor, and a downstream section extending from the armature chamber to the suction chamber in such a manner that the downstream section is separated from a crank chamber of the compression unit.
Abstract:
A gasket is provided between a cylinder block and a valve plate. By providing a through hole at a position near the center of the gasket, bending moment acting on the cylinder block is reduced, and hence deformation of the cylinder block is restrained. As a result, reciprocating motion of a piston and rotational motion of a rotary valve are performed smoothly.
Abstract:
A compressor includes a suction chamber, a crank chamber, and a drive shaft extending through the crank chamber. The drive shaft includes a passage formed therein, and a hole formed therein. For example, the hole may be formed through the drive shaft. The compressor also includes a path communicating between the crank chamber and the suction chamber. Specifically, the path includes the passage and the hole.
Abstract:
A sealing material is used in a seal member for a compressor that compresses refrigerant including carbon dioxide gas. The sealing material has a polymer mixture. The polymer mixture includes an acrylonitrile-butadiene rubber series polymer containing approximately 45% or more by weight of bound acrylonitrile.
Abstract:
A swash plate type compressor used for the air conditioner of an automobile is presented. The compressor has a structure where pulsation pressure caused when refrigerants are compressed and discharged is reduced, thereby permitting noise at the time of driving to be substantially reduced. The compressor can embody the structure by distributing and discharging refrigerant that has been compressed by a plurality of pistons and discharged from a plurality of bores into at least two discharge holes, wherein a frequency of the pulsation pressure is increased in proportion to the number of the discharge holes, but the strength of the pulsation pressure is decreased in inverse proportion to the number of discharge holes. Therefore, the driving noise of the compressor that is formed in proportion to the strength of the pulsation pressure is considerably decreased.
Abstract:
A shaft sealing assembly is located in a suction chamber of a swash plate type compressor to seal the space between a drive shaft and a housing. A first end portion of the drive shaft is supported by a first radial bearing. A second end portion of the drive shaft is supported by a second radial bearing. The suction chamber is closer to the first end portion of the drive shaft than the first radial bearing is. An axial passage is formed in the drive shaft to connect the suction chamber to the crank chamber. An inlet of the axial passage is closer to the second end portion than the second radial bearing is. An outlet of the axial passage is closer to the second end portion than the first radial bearing is.
Abstract:
An external control variable displacement compressor varies its displacement based on the pressure in a control chamber. The compressor has a valve chamber defined in a housing. The valve chamber has an opening to accommodate an electrically operative control valve. The control valve controls pressure in the control chamber due to an external electrical signal. An electrical power supply line is connected to the control valve, the power supply line being in contact with an opening of the valve chamber. The valve chamber opening is surrounded by a circumferential wall. An agonic surface formed on the circumferential wall is constituted of a rounded surface formed by rounding a corner of the opening and/or a chamfered surface formed by chamfering a top of the opening, and is formed on a part of or the entire circumferential wall. The power supply line is to be in contact with the agonic surface.
Abstract:
A power transmission mechanism transmits power of an external drive source to a rotary shaft. The transmission mechanism has a first rotor rotated by the external power source. A second rotor is connected to the rotary shaft. The second rotor is coaxial with the first rotor and coupled to the first rotor transmit power to the first rotor. A disconnecting body disconnects power transmission from the first rotor to the second rotor when an excessive transmission torque is generated between the rotors. A dynamic damper is provided in at least one of the rotors. The dynamic damper has a weight that swings like a pendulum. The axis of the pendulum motion of the weight is separated by a predetermined distance from and is substantially parallel to the rotation axis of the corresponding rotor.