Abstract:
A piezoelectric transducer for measuring a force includes a base element; a pre-loading element; at least one effective main seismic mass aggregation of pre-loaded parts capable of producing the force when being accelerated; a main piezoelectric ceramic element including a first piezoelectric ceramic; at least one compensation seismic mass aggregation of pre-loaded parts capable of producing a compensation force when being accelerated; a compensation piezoelectric ceramic element including a second piezoelectric ceramic. The first piezoelectric ceramic has a thermal sensitivity shift smaller than the second piezoelectric ceramic. The main piezoelectric ceramic element is oriented with respect to the force to be measured and the compensation piezoelectric ceramic element is oriented with respect to the compensation force such that the main electric charge and the compensation electric charge are opposite in polarity.
Abstract:
A device able to sense pressure from multiple directions includes a substrate and an elastic member comprising a bottom end and a touch end. The bottom end is arranged on the substrate, and the touch end is configured to receive an external force. A group of pressure detecting units are arranged on the touch end, each pressure detecting unit is a curved shape and comprises a first end and a second end, the first end being fixed on the substrate, and the second end is fixed with the elastic member. Distances between each first end and the bottom end are same, and a first signal processing unit is electrically connected with the at least two detecting units.
Abstract:
A sensor system for a motor vehicle is provided. The sensor system comprises a flat shielding element which is electrically conductive and to which an electric potential can be applied, and at least one capacitive sensor element which includes an electrically conducting structure which is arranged on one side of the shielding element. As electrically conducting structure the sensor element includes at least one sensor conductor which forms a sewing thread and is sewn onto the one side of the shielding element.
Abstract:
A load can be applied to a beam and a property of the load can be calculated. In one example, a first shear gauge can be configured for positioning on a neutral axis of a beam on one side of a force that the beam is subjected to. Similarly, a second shear gauge can be configured for positioning on the neutral axis of the beam on an opposite side of the force to the first shear gauge. A calculator can be configured to identify a characteristic of the force through use of an output of the first shear gauge and through use of an output of the second shear gauge.
Abstract:
Provided in the present disclosure is a fingerprint bookmark system which may be implemented in a vehicle with one or more configurable interior settings. The fingerprint bookmark system may contain a scanner which may be configured to record a fingerprint from a vehicle occupant such that a fingerprint image showing the fingerprint and a duration data for the fingerprint image are recorded by the scanner. The system may contain one or more processors which may be configured to compare the duration data associated with the fingerprint image with a duration threshold. The one or more processors may be configured to initiate a search to obtain a bookmark for the fingerprint shown in the fingerprint image when the duration data is less than the duration threshold. The one or more processors may be further configured to create a new bookmark when the duration data exceeds the duration threshold.
Abstract:
An article of footwear includes an upper member and a sole structure, with a sensor system connected to the sole structure. The sensor system includes a plurality of sensors that are configured for detecting forces exerted by a user's foot on the sensor. Each sensor includes two electrodes that are in communication with a force sensitive resistive material. The electrodes and the force sensitive resistive material may have multi-lobed shapes. Additionally, the sensor system may be provided on an insert that may form a sole member of the article of footwear. The insert may have slits therethrough, and may have a defined peripheral shape.
Abstract:
A method for locking out load cells includes dispensing a fluid into a collapsible bag that is supported within a support housing, the support housing resting on a plurality of load cells that sense the weight of the fluid; manipulating a plurality of lockouts located adjacent to corresponding load cells from a first position to a second position so that the lockouts remove at least a portion of the weight of the fluid from the plurality of load cells; moving the support housing containing the collapsible bag with the fluid therein to a new location; and further manipulating the plurality of lockouts from the second position back to the first position so that the plurality of load cells again sense the full weight of the fluid within the collapsible bag.
Abstract:
In one aspect, a transducer body, includes a support including a pair of clevis halves; and a sensor body coupled to each of the clevis halves. The sensor body is disposed between the clevis halves and includes a generally rigid peripheral member disposed about a spaced-apart central hub, the central hub being joined to each of the clevis halves with the peripheral member spaced apart from each clevis half, where at least three flexure components couple the peripheral member to the central hub, and where the flexure components are spaced-apart from each other at generally equal angle intervals about the central hub. A biasing assembly connected between the support and the sensor body is configured to provide a bias force between the sensor body and the support.
Abstract:
An exemplary system includes a moveable mass. A load bearing member includes at least one electrically conductive tension member that supports a load associated with movement of the mass. An electrically conductive member is situated along a selected portion of a path of movement of the load bearing member. The electrically conductive member is not subject to a load on the tension member. A processor is configured to determine an electrical resistance of the tension member as an indicator of a condition of the tension member. The processor is configured to determine an electrical resistance of the electrically conductive member. The processor uses the determined electrical resistance of the electrically conductive member to compensate for any environmental influence on the determined electrical resistance of the tension member.
Abstract:
The present invention includes the following steps: setting the thickness of an interposer to an initial value; determining the axial force of the interposer and the radius of curvature of the warpage caused by the difference in the thermal expansion coefficients of the supporting substrate, the joined layer and the interposer at the set thickness; determining the absolute value of the stress on the chip-connecting surface of the interposer from the stress due to the axial force of the interposer and the stress due to the warpage using the determined axial force and the radius of curvature; determining whether or not the absolute value of the stress is within a tolerance; changing the thickness of the interposer by a predetermined value; and confirming the set thickness as the thickness of the interposer when the determined absolute value of the stress is within the tolerance.