Abstract:
A configuration of detecting light from the front face of a light source is the best for confirming the variation of a light quantity, but when a plurality of light sources are present, as many detectors for checking a light quantity as the light sources are necessary and the apparatus configuration becomes complex. In the present invention, a detector for checking a light source light quantity is installed in a reaction container transfer mechanism used commonly for a plurality of detection sections, and the light quantities of light sources are checked with the detector.
Abstract:
A system for conducting an assay comprises a power source (16), a controller (13) for controlling the assay and a plurality of assay units (14) operatively connected to one another such that the controller can communicate with the assay units and the system is capable of conducting the assay. An assay device comprises a substantially circular body (24) having a plurality of chambers in fluid connection such that fluid can pass between said chambers and a central hub (200) having a sample inlet (202) disposed therein for receiving a sample.
Abstract:
An apparatus for spectroscopic analysis of vinificition liquids features a sample holder for a sample container of vinification liquid, a light source for directing a beam of light into the sample supported by the sample holder, a spectrometer arranged for receiving and measuring the beam of light after interaction thereof with the sample in order to perform a spectroscopic scan of the sample and generate measured spectral data thereon, and a scanning device positioned for scanning a machine readable code on the sample container. A computing device in communication with the spectrometer and the scanning device applies a classification to the measured spectral data of the sample according to a classification code read from the sample container. The classification code is used to determine what parameters should be calculated from the spectral data for the particular sample in question.
Abstract:
An automatic optical measurement system (100) is provided. The measurement system (100) includes a sample vial (10) and an automatic optical measurement apparatus (90) configured to receive the sample vial (10). The automatic optical measurement apparatus (90) is configured to detect a presence of the sample vial (10) in the automatic optical measurement apparatus (90) and measure a light intensity of light substantially passing through the sample vial (10) if the sample vial (10) is present. The measured light intensity is related to sample material properties of a sample material within the sample vial (10).
Abstract:
Optical encoding of a cuvette or other object is provided by means of multiple facets molded integrally into flanges or other portions of the object, which facets selectively refract light passing therethrough in accordance with a predetermined code. The detector for the coded light includes a separate detector for each code state of the facets, with the detector having a different output when no facets are between a light source and the detectors. The facets are preferably bevels, which are selectively angled in accordance with the code.
Abstract:
A cuvette adapted to contain spherical particles having a specific binding agent on the surface thereof and which have a detectably different light scattering characteristic in the presence of a material having a specific binding partner thereof, and which includes a window through which light can be projected for the purpose of determining any change in light scattering properties of the contents of the cuvette, and an optical element occupying at least part of a wall of the cuvette which, when light passes therethrough, causes at least some of the light to be deflected off axis towards a particular point. By using such a cuvette in combination with a light level detector located as the said particular point, a cuvette can be identified before an assay is performed by checking the light level at the said particular point. The optical element may be a halogram or a diffraction grating or a lens or any combination thereof. A method of checking whether a cuvette inserted into a testing apparatus, includes such an optical element is described as well as a method of performing an assay which includes a cuvette validating step.