Abstract:
Methods and devices for sensing foreign bodies and the like in products, such as food products, are described. Said products, which are generally light transmissive, are backlit by a source of light and an image of said object is taken. In one form of the invention, the light is polarized both before an after transmission through the said object. In another form of the invention, the products are conveyed by a holder having gaps therein that allows the light from said light source to pass through said holder. In some forms of the invention, the source of light has a power output dependent on the dimensions of said object.
Abstract:
A method of verifying the color and tinting strength of a manufactured batch of a semi-transparent wood stain. In accordance with the method, a standard batch of the wood stain is formed and then mixed with a specified amount of a white colorant to form a standard measurement batch. A test sample of the manufactured batch is obtained and is also mixed with a specified amount of the white colorant to form a test measurement sample. Layers of the standard measurement batch and the test measurement sample are formed on the substrates and complete hide obtained. Reflectance measurements of the layers are made using a spectrophotometer. The reflectance measurements are used to determine if the color and the tinting strength of the manufactured batch is within an acceptable deviation range of the color and tinting strength of the standard batch. This allows for objective color difference and tint strength difference calculations, and adjustments can be made therefrom, therefore eliminating the past visual trial and error methods.
Abstract:
This application relates to an apparatus and method for automated inspection of formed metal containers. More specifically, it pertains to the use of machine vision systems to identify and correlate manufacturing defects occurring in formed food and beverage containers to specific manufacturing paths or sources of origin (e.g., body makers) used in the container forming process. The disclosed invention is enabled by the placement of a machine-readable code on specific portions of the can body during the forming process and the use of machine vision reading techniques.
Abstract:
A pattern detection method and apparatus for inspecting, with high resolution, a micro fine defect of a pattern on an inspected object, and a semiconductor substrate manufacturing method and system with a high yield. A micro fine pattern on the inspected object is inspected by annular-looped illumination through an objective lens onto a wafer, the wafer having micro fine patterns thereon. The illumination may be polarized and controlled according to an image detected on the pupil of the objective lens, and image signals are obtained by detecting a reflected light from the wafer. The image signals are compared with reference image signals and a part of the pattern showing inconsistency is detected as a defect. Simultaneously, micro fine defects on the micro-fine pattern are detected with high resolution. Further, process conditions of a manufacturing line are controlled by analyzing a cause of defect and a factor of defect.
Abstract:
A spectrograph includes a base, a first optic mounted with respect to the base, a second optic mounted with respect to the base, and a third optic mounted with respect to the base. A first relative position between the first optic and the second optic is adjustable about a first pivot axis. A second relative position between the second optic and the third optic is adjustable about a second pivot axis independently from the adjustability of the relative position between the first optic and the second optic. The second pivot axis is substantially coincident with the first pivot axis, and a distance between the third optic and the second optic is fixed during adjustment of the second relative position.
Abstract:
An optical measurement system measurement system for examining a sample. The measurement system comprises an internally reflective element, a stage, an optical assembly, a chassis, and a sensor. The internally reflective element has a contact surface. The stage is positioned below the internally reflective element. The stage and the internally reflective element are configured to apply a force to the sample. The optical assembly comprises a light source and a light detector. The optical assembly is configured to scan the sample by directing source light from the light source towards the contact surface and detecting source light optically interacting with the contact surface by the light detector. The chassis is configured to support the optical assembly and the internally reflective element. The sensor is mounted to the chassis and configured to detect the force applied to the sample by the internally reflective element and the stage.
Abstract:
Provided herein is an apparatus for assessing a fluorescence characteristic of a gemstone. The apparatus comprises an optically opaque platform for supporting a gemstone to be assessed, one or more light source to provide uniform UV and non-UV illumination, an image capturing component, and a telecentric lens positioned to provide fluorescent images of the illuminated gemstone to the image capturing component. Also provided are methods of fluorescence analysis based on images collected using such an apparatus.
Abstract:
The invention discloses a glycosuria measurement device, comprising a prism body and a housing. The prism body comprises a first accommodating space, a junction surface, a first light penetrating surface, a second light penetrating surface, a third light penetrating surface and a light-emitting surface. The first accommodating space accommodates urine. The junction surface is formed at a bottom surface of the first accommodating space. The first light penetrating surface is formed at the first lateral surface of the first accommodating space. The second light penetrating surface is formed at the second lateral surface of the first accommodating space. The third light penetrating surface is disposed opposite to the junction surface. The light-emitting surface is disposed opposite to the junction surface. The housing comprises a second accommodating space, a first light-emitting port and a second light-emitting port. The second accommodating space accommodates the prism body.
Abstract:
Disclosed is a metrology apparatus and method for measurement of a diffractive structure on a substrate. The metrology apparatus comprises a radiation source operable to provide first radiation for excitation of the diffractive structure such that high harmonic second radiation is generated from said diffractive structure and/or substrate; and a detection arrangement operable to detect said second radiation, at least a portion of which having been diffracted by said diffractive structure.
Abstract:
A measuring apparatus includes a light source configured to emit light in a mid-infrared region, the light including: first-wavelength light having a wave number of from 970 cm-1 or more to 1010 cm-1 or less; and second-wavelength light different from the first-wavelength light, the second-wavelength light having a wave number of from 950 cm-1 or more to 990 cm-1 or less; a photosensor configured to detect the light emitted from the light source and reflected by a measurement target; and an information processing device configured to: obtain a first absorbance of the first-wavelength light and a second absorbance of the second-wavelength light from an output of the photosensor; and determine a biomarker of the measurement target based on the first absorbance and the second absorbance.