Abstract:
The present invention relates to an apparatus and method for imaging time resolved fluorescence in biochemical and medical samples. In a primary aspect, the device includes a lens of large aperture, a flash lamp in the illumination path, a fast-acting solid state shutter or a gated detector in the emission path, a device for delivering homogenous monochromatic illumination to a plurality of wells distributed within a microwell plate, a digital camera of high quantum efficiency, and a computer under computer control, the lamp is pulsed at short intervals. The fast-acting emission shutter or gated detector operates to limit exposure of the camera to a period some microseconds after the extinction of each lamp pulse, during which only delayed fluorescence is transmitted to the camera. The invention achieves simultaneous time resolved imaging of a plurality of samples, with high sensitivity and high throughput.
Abstract:
The present invention relates to an apparatus and method for imaging time resolved fluorescence in biochemical and medical samples. In a primary aspect, the device includes a lens of large aperture, a flash lamp in the illumination path, a fast-acting solid state shutter or a gated detector in the emission path, a device for delivering homogenous monochromatic illumination to a plurality of wells distributed within a microwell plate, a digital camera of high quantum efficiency, and a computer under computer control, the lamp is pulsed at short intervals. The fast-acting emission shutter or gated detector operates to limit exposure of the camera to a period some microseconds after the extinction of each lamp pulse, during which only delayed fluorescence is transmitted to the camera. The invention achieves simultaneous time resolved imaging of a plurality of samples, with high sensitivity and high throughput.
Abstract:
An apparatus for housing a submergible optical sensor is provided. The apparatus comprises a sensor body having a sensor opening. The sensor body is operable to protect a sensor when submerged in a fluid. A shutter is disposed above the sensor opening. A motor couples to the shutter and can rotate the shutter. A controller couples to the motor and is operable to cause the motor to rotate the shutter such that the sensor opening is exposed when the sensor takes a measurement. The controller is further operable to cause the motor to rotate the shutter such that the shutter covers the sensor opening when the sensor is not taking a measurement.
Abstract:
A bonded wire inspection apparatus for inspecting wires bonded between the pads of a semiconductor chip and the leads of a lead frame including: a vertical illuminator that illuminates an object of inspection from above; an optical assembly that images particular portions of the object such as the ball at one end of a wire and the crescent at another end of the wire, by receiving the light that is emitted from the vertical illuminator and reflected by the object; a camera that photographs the image obtained by the optical assembly; and a diaphragm that is provided beneath the vertical illuminator and electrically changeable in its opening diameter. Thus, by adjusting the opening diameter of the diaphragm, clear images of the object are constantly obtained despite the differences of surface smoothness of the portions to be inspected.
Abstract:
Apparatus is provided for the detection of chemiluminescence, e.g., the luminescent assay of an analyte in a sample. Sample, namely the production of a permanent photographic record of such chemiluminescence, e.g., by the use of a POLAROID film. The apparatus includes three interrelated elements. The first element comprises a film holder for holding a photographic film sensitive to a chemiluminescent reaction of the sample, the film holder defining a window in registry with any photographic film which may be held in the film holder. The second element comprises a sample holder for holding the sample in registry with the window and any photographic film which may be held in the film holder, and for allowing movements of the sample relative to any photographic film which may be held in the film holder between (i) a raised position, wherein the sample holder, and thus the sample is in spaced relation to any photographic film which may be held in the film holder and (ii) a lowered position, wherein said sample holder is in sufficiently close proximity to any photogarphic film which may be held in the film holder means to allow the sample held thereby directly to contact any photographic film which may be held in the film holder. The third element comprises a shutter operatively associated with the window of the film holder and movable between a closed position, wherein the shutter obstructs the window so as to prevent the sample holder from moving into the lowered position, and an opened position, wherein the window is unobstructed by the shutter so as to permit the sample holder to move from the raised position to the lowered position. The production of the permanent photographic record begins when the test sample in the container is placed in direct contact with the photographic film. The production of the photographic record is stopped when the test sample in the container is removed out of direct contact with the photographic film and the slidig shutter is closed. Various test results can be observed by varying the time of direct contact of the test sample in the reactant container with the photographic film. This provides maximal analytical sensitivity. During the entire test, exposure to ambient light is prevented.
Abstract:
A multi-chronal fluorescence imaging technique for spatial differentiation and correlation of a plurality of separate sample components tagged with site specific dyes is described. The dyes have decay times that are widely separated and vary by approximately a factor of ten from one dye to the next. These are added to the sample and are excited with a short pulse of ultraviolet light. Between the sample and a detector is placed an adjustable shutter or gate which is opened and closed at predetermined intervals so that the detector can see the approximate maximum intensity output of each dye in a shown ordered sequence without significant interference from the other dyes.