Abstract:
A method of hiding data comprising creating a histogram of an attribute of a first data set. The histogram includes occurrences of the attribute. Two adjacent occurrences are selected where a count of one of the two adjacent occurrences is zero. A second data set is embedded in data of the first data set associated with the selected adjacent occurrences.
Abstract:
Enhanced method for embedding watermarks based on integer-to-integer wavelet transform is provided. The method according to the present invention includes the steps of: (A) dividing an original image (X×Y) to a plurality of image blocks (M×N); (B) selecting image blocks for embedding an location information that indicates image blocks to be watermarked; (C) embedding the location information into the image blocks selected in the step (B); and (D) embedding watermarks into remaining image blocks which are not selected in the step (B).
Abstract:
A data set is transformed to a domain in which values are robust to distortion. The values are then expanded to carry auxiliary data. To recover the data, the data set is transformed into the domain, further transformed to get a set of possibly expanded data, and then processed to extract auxiliary data from the expanded values.
Abstract:
When creating a marker, an encryption apparatus extracts each pixel value in a region and allows a storing unit to save, as restoration information, the high-order bits of each extracted pixel value. Then, the encryption apparatus creates a marker by changing the high-order bits of the pixel value in a region in which the marker is created and embeds encrypted information in an encrypted region specified by the marker. When decoding the encrypted information, a decoding apparatus detects the marker from a digital image, decodes the encrypted information in the encrypted region specified by the marker, and overwrites bits contained in the restoration information with the high-order bits of the pixel value of the marker.
Abstract:
A reversible watermarking program transforms a host data file into a logical storage unit for auxiliary data files by embedding the auxiliary files in the data stored in the host data file. The reversible watermark modifies host data such as an image, audio, video, or software code, to carry auxiliary data. For perceptual content such as visual or audio media, the reversible watermark can maintain a desired level of perceptual quality, effectively hiding the auxiliary data in the host data. The reversible watermark enables the original host data prior to modifications due to the embedding to be restored.
Abstract:
A watermark is embossed into a model of a linear or surface shape, especially a non-uniform rational B-splines model. The model has a plurality of splines, the combination of which forms the shape. Control points are assigned to the splines such that a course of the respectively associated spline can be modified and thus be controlled by changing the position of the control points and/or weights of the control points. Nodes which are located in a section of the shape that is formed by the respectively associated spline are allocated to the splines. In order to change the shape (the modified curve runs through point Cmod) when a watermark is embossed into the model, the position of at least one control point is modified, the weight by which a control point affects the shape and thus influences at least one area of the shape is modified, and/or an additional control point is inserted into the model. At least one additional node is inserted into the model (new node at u=1.1875 on the modified curve) in order to obtain information on how the change of the shape can be reversed.
Abstract:
In the case that media data containing image information of persons are managed, protection of privacy is realized, and an increase in management costs and a deterioration of operability are suppressed.In a media data processing apparatus into which media data containing at least one image information is inputted so as to produce encrypted media data, the media data processing apparatus is equipped with: biological feature extracting unit 10 for extracting a feature of biological information which is related to at least one person contained in said image information from the media data inputted thereinto; and encrypting process unit 20 for partially, or wholly encrypting the media data based upon the feature extracted by the biological feature extracting unit. A feature parameter of a face of the person contained in the media data is utilized.
Abstract:
An image processing apparatus embeds information into image data without an overhead. The image processing apparatus includes a selection unit for selecting some of the pixels forming the image data. A changing unit embeds the information into the pixels selected by the selection unit by swapping the bits of the values of the selected pixels according to the information.
Abstract:
Reversible watermarking methods enable auxiliary data to be embedded in data sets, such as images, audio, video and software. The reversible nature of the method enables the original data set to be perfectly restored. Control systems with feedback loops are used to optimize embedding based on distortion or auxiliary data capacity constraints. The watermarking may be applied recursively to embed several layers, where subsequent layers are embedded into a previously watermarked data set. To recover the original data, each layer is extracted and the data restored in reverse order of the embedding. Sets of elements that are expanded to carry auxiliary data in each layer overlap or are interleaved to maximize embedding capacity or quality of the host data.
Abstract:
A method of embedding watermark data into a two-colour (binary) image includes dividing the image into blocks and assessing the suitability of each block to embed a bit of watermark data by assessing whether or not the flipping of a defined pixel in each block affects the visual attributes of said block in manner to be perceptible by the human eye. Data is only embedded in those blocks determined to be suitable for data embedding, by flipping the defined pixel, as required. A recipient of the document may similarly assess which blocks contain watermark data, by assessing the suitability of each block in the document to embed such data. Conveniently, watermark data may be extracted without further information about the data's location within a document.