Abstract:
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Abstract:
A polarized neutron guide for separating neutrons into polarized neutrons while minimizing loss of the neutrons is provided. The polarized neutron guide includes a body, the first space and the second space, and a neutron separation space. The body includes super mirrors coated with a neutron-reflective thin film and the first and second spaces are formed by the first plate inside the body. The neutron separation space is formed by the second plate disposed at the entry of the first space and the third plate disposed at the entry of the second space. Spin-up polarized neutrons and spin-down polarized neutrons are simultaneously separated and transferred in the first and second spaces, respectively. Therefore, with minimum loss of the neutrons, the spin-up polarized neutrons and the spin-down polarized neutrons are effectively separated and collected.
Abstract:
An X-ray, neutron or electron diffraction method, which is devoid of the defects of conventional diffraction apparatus using an imaging plate, which can analyzing a sample, in a non-destructive mode without contact and with a good S/N ratio, even when the sample significantly generates fluorescence or scattered X-rays. The method includes the steps of irradiating a predetermined area of the sample with an X-ray, neutron or electron beam whose axis is oriented at a fixed direction to obtain a diffraction ray, rotating the sample while maintaining the irradiated predetermined area substantially unchanged and while maintaining the angle between the axis of the X-ray, neutron or electron beam relative to the tangential plane of the predetermined area substantially unchanged, forming an image of the diffraction ray from the sample during the rotation of the sample through every predetermined angle using an imaging plate, reading a data of the image formed on the imaging plate to obtain an output data for each rotation of the sample through the predetermined angle, and processing the output data to obtain desired analysis information.
Abstract:
The specification describes a refractive lens for focusing cold neutrons. It comprises a plurality of concave lens elements made from materials with low neutron absorption.
Abstract:
The optical system includes a matter diffraction grating and an atomic beam intersecting the grating at a grazing angle of incidence. The grazing incidence angle should be less than 10.sup.-2 radians. At such shallow angles of incidence, neutral atomic beams are diffracted by conventional diffraction gratings. A suitable grating has a local flatness of 10 Angstroms and has 2400 lines per millimeter. Preferred embodiments include interferometers, beam splitters and combiners, and velocity selectors.
Abstract:
A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.
Abstract:
The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, each having a desired isotope and at least one other. The particle beam is directed in a normal direction against the standing wave, which may be a light wave. The particles; that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted.
Abstract:
A BEAM OF NEUTRONS PASSES THROUGH AN ENTRANCE HOLE BORED IN A STATIONARY SHIELD BLOCK AND IS REFLECTED BY A ROTATABLE CRYSTAL TO FORM A BEAM OF MONOCHROMATIC NEUTRONS. AFTER HAVING BEEN DEFINED BY A COLLIMATOR, THE BEAM OF MONOCHROMATIC NEUTRONS IS REFLECTED BY ANOTHER CRYSTAL WHICH IS MOVABLY DISPOSED IN THE SHIELD BLOCK THROUGH AN EXIT HOLE IN THE SHIELD BLOCK. IN ORDER TO SELECTIVELY EXTRACT BEAMS OF MONOCHROMATIC NEUTRONS WHICH ARE DIFFERENT IN NEUTRON WAVELENGTH, THE FIRST CRYSTAL IS ROTATABLY MOUNTED AND THE SECOND CRYSTAL IS ALSO ROTATABLY MOUNTED AS WELL AS BEING MOUNTED FOR TRANSLATIONAL MOVEMENT TOWARD AND AWAY FROM THE EXIT HOLE ALONG A GUIDE RAIL.
Abstract:
In order to improve flux and quality of neutron sources, the disclosure provides a beam shaping assembly for neutron capture therapy includes: a beam inlet; a target, wherein the target has nuclear reaction with an incident proton beam from the beam inlet to produce neutrons; a moderator adjoining to the target, wherein the neutrons are moderated by the moderator to epithermal neutron energies, the moderator includes a main body and a supplement section surrounding the main body, the main body and the supplement section form at least a tapered structure; a reflector surrounding the moderator; a thermal neutron absorber adjoining to the moderator; a radiation shield arranged inside the beam shaping assembly, wherein the radiation shield is used for shielding leaking neutrons and photons so as to reduce dose of the normal tissue not exposed to irradiation; and a beam outlet.