Abstract:
Flux fountain techniques are described. In one or more implementations, an apparatus includes a cover configured to be disposed over at least a portion of a display device of a computing device that is configured as a tablet and a connection portion attached to the cover using a flexible hinge. The connection portion is configured to be physically coupled to the computing device using a magnetic coupling device. The magnetic coupling device includes a first magnet that is disposed in the connection portion such that a magnetic field is aligned along an axis and second and third magnets are disposed in the connection portion at opposing sides of the first magnet from each other. The second and third magnets have respective magnetic fields that are aligned along a respective axis that is substantially perpendicular to the axis of the magnetic field of the first magnet.
Abstract:
Techniques for mobile device power state are described. In one or more implementations, a mobile device includes a computing device that is flexibly coupled to an input device via a flexible hinge. Accordingly, the mobile device can operate in a variety of different power states based on a positional orientation of the computing device to an associated input device. In one or more implementations, an application that resides on a computing device can operate in different application states based on a positional orientation of the computing device to an associated input device. In one or more implementations, techniques discussed herein can differentiate between vibrations caused by touch input to a touch functionality, and other types of vibrations. Based on this differentiation, techniques can determine whether to transition between device power states.
Abstract:
A headphones apparatus with a touch input unit, and a mobile device for connecting to the headphones are provided. The apparatus includes a microphone for receiving audio signals, a left loudspeaker for outputting a left audio signal, a right loudspeaker for outputting a right audio signal, a touch input unit for receiving a user's operating signals to control a mobile device, and a plug. The plug includes a sensing contact for transmitting the operating signals from the touch input unit to the mobile device, a microphone contact connected to the microphone for supplying bias voltage to the microphone, a left audio contact connected to the left loudspeaker, a right audio contact connect to the right loudspeaker, and a ground contact.
Abstract:
A multi-directional switch includes switches, a wiring board having an electrode, a pressure-sensitive body disposed over the electrode, a detection pin disposed on the upper surface of the pressure-sensitive body, and an operating body configured to push the detection pin and the switches by being tilted. The degree of a pushing force exerted by the operating body onto the detection pin changes the contact resistance between the pressure-sensitive body and the electrode. The multi-directional switch enables an electronic apparatus connected thereto to perform diverse functions by reflecting changes in the contact resistance.
Abstract:
A touch key assembly includes a cover having at least one touch key which is identified by an optically transmissive region of the cover. The cover is also shaped to define a push key opening. The assembly also includes a touch pad structured to operatively couple to the cover such that the touch pad is positioned relative to the touch key. A push key is positioned within the push key opening of the cover. The touch key assembly may be implemented in a portable electronic device, such as a mobile terminal or a personal digital assistant (PDA).
Abstract:
In a data-input device an actuator element that can be manually actuated, and a sensor mechanically coupled to the actuator element. The sensor is formed in a body of semiconductor material housing a first sensitive element, which detects the actuation of the actuator element and generates electrical control signals. The first sensitive element is a microelectromechanical pressure sensor, formed by: a cavity made within the body; a diaphragm made in a surface portion of the body and suspended above the cavity; and piezoresistive transducer elements integrated in peripheral surface portions of the diaphragm in order to detect its deformations upon actuation of the actuator element.
Abstract:
A two-stage switch apparatus includes: a PCB including first and second electrodes; a conductive dome disposed on the PCB; an insulating film covering a surface of the conductive dome on a side opposite to the PCB, and third and fourth electrodes above the conductive dome; and a button actuator provided over a side of the insulating film, which is opposite the PCB. The button actuator includes a conductive elastic body protruding to the side of the insulating film at positions corresponding to both the third and fourth electrodes. An analog portion is formed by the conductive elastic body, the third electrode and the fourth electrode, when the conductive elastic body contacts both the third and fourth electrodes. A digital portion is formed by the conductive dome and the second electrode, when the button actuator is pressed and the conductive dome is indented.
Abstract:
An operating device for a cooktop has a cover with a control panel with a plurality of operating areas. Below the panel, several FSR sensors are positioned. When a control panel is pushed down by a process of operation, the FSR sensor changes its electrical resistance resulting in change of a signals that can be detected and interpreted as operation of the appliance by a user.
Abstract:
The present invention provides a conductive resin composition that comprises a complex of poly(3,4-dialkoxythiophene) and a polyanion, wherein the complex has a conductivity of 0.30 S/cm or more. This composition is preferably used for production of a conductive film having a conducting layer made of the composition, and the resulting conductive film is preferably used in a resistive-type film switch.
Abstract:
A first resistor layer is formed on the lower surface of a base in film form, and at the same time, a second resistor layer in which particles of different particle diameters are dispersed is formed and layered on the lower surface of the first resistor layer, and thus, a pressure sensitive conductive sheet is formed. In this configuration, the second resistor layer in uneven form makes contact with the fixed contacts in accordance with a pressing force so that electrical connection is made via the second resistor layer and the first resistor layer, and therefore, a thin panel switch with little fluctuation in the resistance value resulting from repeated operation where a stable resistance value can be gained can be realized.