Abstract:
In an exemplary embodiment, a metal capillary cathode for electric discharge vessels with an emission substance carrier disk porous on its front face and comprised of metal melting at a high temperature is constructed to prevent lateral emission of electrons (interfering emission). To this end, the disclosure provides that the emission substance carrier disk has a nonporous outer casing surface with a higher electron work function than the outer, active surface of the emission substance carrier disk. Such a dispenser cathode is employed as a metal capillary cathode in traveling wave tubes.
Abstract:
The invention relates to metal oxide activated porous tungsten cathodes and methods of their manufacture. A cathode 1 of porous tungsten activated by metal oxides is mounted on a housing 2 which has a heating filament 3. On the outer face of the cathode there is a pattern or grid of pure tungsten (preferably formed by a chemical vapor deposition of WCl.sub.6 or WF.sub.6) of crystalline material the outer face of which has an orientation in the (100) or (110) plane and is parallel to the surface of the cathode. The invention will find particular use in the cathode guns of high frequency tubes such as traveling wave tubes and klystrons.
Abstract:
A reaction thermionic cathode of the diffusion type on the basis of an activated high-temperature support metal doped with a diffusion-promoting additive for the activator substance, provided with a barrier layer inhibiting the self-diffusion of this additive in an undesired direction.
Abstract:
A thermionic electron emitter comprises a tube of wall thickness less than 0.1 mm, a body of thermionic electron emissive material compressed and sintered in the tube, and a ring, coaxial with the tube, within the body to provide constraint against cracking of the body.
Abstract:
An emissive member for a controlled-porosity, dispenser-type cathode comping a three-component sandwich consisting of: (1) a supporting disc; (2) a layer of nonsintered alkaline earth material on said disc; and (3) a thin perforated foil on said layer. The foil is made of refractory metal and has a uniform pattern of tiny holes through which the active material of the reservoir migrates to coat the surface of the foil, the foil thus serving as the electron-emitting surface of the cathode.
Abstract:
A quick-heating planar cathode employs a disk of fine mesh wire of refractory metal around which is bonded or sintered a porous layer of tungsten particles impregnated with electron-emissive material, a layer of inorganic insulation covering one surface of the porous cathode, and a heater on the insulating surface.
Abstract:
A unitary heater, cathode, and control electrode structure for an electron discharge device is formed by coating a disk of a porous refractory metal with an inorganic insulating layer, overcoating the insulating layer with a film of refractory metal, forming a grid pattern in the film on one side of the disk, forming openings in the film and insulating layer corresponding to the pattern, and impregnating the disk with thermionic emissive material.