Abstract:
A process is provided for the production of porous non-evaporable getter materials comprising at least one first element selected from Zr and Ti and at least one second element selected from V, Cr, Mn and Ni. The starting metal powders are produced by reduction of the corresponding oxides, with calcium hydride and the thus obtained powders are compacted and sintered at a value of pressure and temperature in a given range. The getter materials due to the production process, have a novel distribution of chemical composition through the getter body, resulting in an improved combination of mechanical and gas-sorption properties.
Abstract:
An evaporable getter device containing a mixture of nickel and BaAl4 is made to have a shorter barium evaporation time by using a mixture of nickel powders in which the particles of nickel have different morphologies and different specific areas.
Abstract:
Nitrogenated evaporable getter devices are disclosed which are resistant to the fritting conditions of the production processes of kinescopes for times of about five hours. A process is also disclosed for the production of these devices. The nitrogenated evaporable getter material comprises: 1) BaAl.sub.4 powder, 2) nickel powder, and 3) iron nitride and/or germanium nitride particles that have been coated with a thin vitreous layer of boron oxide and silicon oxide, formed through a sol-gel process employing a starting solution wherein the atomic ratio between boron and silicon ranges from about 4:1 to 0.75:1.
Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated at applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500.degree. C. when said activator material is heated to a temperature of between about 280.degree. C. and about 500.degree. C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000.degree. C. These materials can be used in devices and locations for which low applied activation temperatures are required.
Abstract:
A process for producing a field emitter flat display includes providing a supported porous layer of a non-evaporable getter material by depositing the non-evaporable getter material on a substrate followed by sintering the deposited material. The substrate having the porous layer of non-evaporable getter material thereon is then housed in an inner space defined by opposing plates. The inner space is then evacuated and hermetically sealed. The non-evaporable getter material is preferably deposited by preparing a suspension of non-evaporable getter material particles in a suspending medium, coating a surface of a substrate with the suspension by, e.g., spraying, and sintering the coating.
Abstract:
A process is disclosed for producing non-evaporable getter materials having high porosity and improved gas sorption rates. The process includes mixing together a metallic getter element, a getter alloy and a solid organic compound, all three components being in the form of powders having specific particle sizes. The mixture is subjected to a compression of less than about 1000 kg/cm.sup.2 and is sintered at a temperature between about 900.degree. C. and about 1200.degree. C. for a period between about 5 minutes and about 60 minutes. The getter material thus obtained is used to produce getter bodies shaped as pellets, sheets or discs having better mechanical strength than similar bodies of other getter material having comparable porosity.
Abstract translation:公开了用于生产具有高孔隙率和改善的气体吸附速率的非蒸发性吸气剂材料的方法。 该方法包括将金属吸气剂元件,吸气剂合金和固体有机化合物混合在一起,所有三种组分都是具有特定粒径的粉末形式。 将混合物经受小于约1000kg / cm 2的压缩,并在约900℃至约1200℃的温度下烧结约5分钟至约60分钟。 由此获得的吸气剂材料用于生产具有比具有可比较的孔隙率的其它吸气材料的类似物体更好的机械强度的颗粒,片或盘形状的吸气体。
Abstract:
A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.
Abstract:
A high field superconductor is formed of an A-15 superconductor in the form of a layer thinner than 1000.ANG.. This layer is carried by a support layer formed of a normal metal, the support layer having a thickness less than 1000.ANG..
Abstract:
A superconductor which is superconducting of a predetermined high field and low temperature is formed by combining a plurality of metal bodies to form a composite structure. The metal bodies are selected from transition metals such as niobium, tantalum, zirconium, hafnium and vanadium, and alloys of such metals, alternate bodies being formed of ductile alloys of the metals which are not superconducting at the predetermined high field. The alternate bodies of transition metals are reacted to form a ductile superconducting ternary alloy zone at the interfaces of these bodies. The extent of the reaction is limited so as to maintain areas of transition metal and transition metal alloys which are not superconducting at the high field. The composite structure is reduced sufficiently that each non superconducting zone is less than 1000A.degree. thick and serves as an artificial pinning site for each adjacent superconducting zone.
Abstract:
The chemical resistance of a gettering device comprising a mixture of barium-aluminium powder and nickel powder compressed in a metal holder is considerably increased by using nickel powder having a specific surface smaller than 0.15 m.sup.2 per gram and an average grain size smaller than 80 microns, while the barium aluminium powder has an average grain size smaller than 125 microns. The said gettering device is extremely suitable for use in the manufacture of a color display tube in which the gettering device is to be placed inside the envelope of the tube before certain parts of said envelope are sealed together at a high temperature.