Abstract:
An electric-power supply system includes a plurality of vehicles each configured to supply AC electric power to an electric load external to the vehicles, and a switching apparatus provided between the electric load and the plurality of vehicles and that electrically connects one of the vehicles to the electric load. Each of the vehicles includes an internal combustion engine, an electric-power generation device that generates the AC electric power to be supplied to the electric load using output of the internal combustion engine, and a controller controlling the electric-power generation device, when power supply to the electric load is switched by the switching apparatus from one of the vehicles to the vehicle having the controller, to generate the AC electric power in synchronization with a phase of AC voltage which has been output from the one of the vehicles that previously supplied the AC electric power.
Abstract:
The present invention relates to the field of generator technology. It is an object of the invention to control the stability in an electric grid in which a plurality of generators are connected providing electric power to the grid. A static exciter system includes a control device for controlling the field voltage of the field winding of at least two generators connected to a grid system via a busbar.
Abstract:
A system and method to perform automatic phase reversal detection are described. The system includes a first subsystem and a second subsystem configured to be synchronized with the first subsystem. A controller is configured to receive a first input from the first subsystem or the second subsystem and a second input from the first subsystem or the second subsystem and perform phase reversal detection based on the first input and the second input.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, at least one load electrically coupled to the plurality of UPSs and the ring bus, and a controller communicatively coupled to the plurality of UPSs. The controller is configured to calculate a phase angle for each UPS of the plurality of UPSs, wherein the phase angle is calculated relative to a common reference angle, and control operation of each UPS based on the respective calculated phase angles.
Abstract:
An electrical generating system for aircraft with one or more engines includes a plurality of generators associated with the engines so as to produce respective AC outputs. The frequencies of these outputs can differ from each other, as a result of differing engine speeds and/or deliberate design, but they are to be connected to a common bus to avoid redundancy of wiring. One or more converters are present between the generators and the bus for adjusting the output frequency of the generators to provide an AC output voltage at a common bus frequency. The system includes a control system for setting the AC bus frequency in such a way that it can vary with time. The bus frequency may follow the natural frequency of the engine, and only small converters are needed to make the already approximately equal generator frequencies identical, so that they can all feed the common bus.
Abstract:
A method for no break power transfer in a variable frequency power generating system, the power generating system comprising a first bus connected to a first generator and a second bus connected to a second generator includes configuring a power transfer device to output power that is synchronized to match a voltage and a frequency of the second bus to the second bus; reconfiguring the power transfer device to output power that is synchronized to match a voltage and a frequency of the first bus to the second bus; and closing a tie switch located between the first bus and the second bus.
Abstract:
A system for modulating a frequency output of a generator coupled to an electric distribution network is described herein. The system includes: a doubly-fed induction generator coupled to a power source selected from at least one of hydropower and fuel combustion, the generator providing an electrical power output having a first frequency based on a rotational speed of the generator; a controller for selecting the rotational speed of the generator; and a converter coupled to the generator for changing the frequency of the output to a selected value, in response to selecting the rotational speed. Methods for modulating a frequency output of a generator coupled to an electric distribution network are also described.
Abstract:
Disclosed herein are systems and methods for converting data samples representing alternating electric currents. The data samples may be obtained by sampling a first alternating electric current having a first frequency at a sampling frequency, sampling a second alternating electric current having a second frequency at the sampling frequency, and converting the data samples using a conversion algorithm to compensate for any discrepancy caused by the difference between the first frequency and the second frequency. The corrected data samples may be utilized to determine various characteristics of the alternating electric current, such as voltage magnitude, voltage phase angle, current magnitude, current phase angle, and other related attributes. In one application, the systems and methods disclosed herein may be utilized in connection with an intelligent electronic device used to couple a first electrical system, such as a power generator, to a second electrical system, such as a utility intertie.
Abstract:
A system for detecting and locating a disturbance event within a power grid includes a series of frequency disturbance recorders (FDRs) taking measurements in the power grid at dispersed points of the power grid, an information management system, configured to receive data from the series of FDRs and analyze the received data and a communications network interconnecting the series of FDRs and the information management system. The information management system is configured to examine orders and patterns of receipt of frequency changes at the FDRs in the data caused by the disturbance event and to triangulate a location of the disturbance event based on the orders and patterns of receipt of the frequency changes. Example methods of detection and location of disturbance events are also described.
Abstract:
A synchronizing check relay is used in an electrical transmission network for controlling a circuit breaker to interconnect first and second transmission lines to establish power flow therebetween and includes an input circuit for receiving signals from first and second transmission lines. A phase difference generator generates a phase difference signal proportional to a phase difference between said signals from said first and second transmission lines. A phase difference comparator receives the phase difference signal and produces a phase output signal at a selected phase condition. An adjustable timer produces a timer signal after a selected time interval in response to the phase comparator to insure a proper phase difference between the transmission lines. The voltage sensor produces a breaker closing inhibit signal when one of the alternating current voltages is outside a reference limit. A control circuit is responsive to the phase output signal, the time signal and the breaker closing inhibit signal for providing a control response to the circuit breaker.