Abstract:
Compositions and methods of preparing sorbent compositions (SCs) and protonated sorbent compositions (PSCs) for use in concentrating lithium from native brines are described. In particular, SCs of the general formula Li1.3-1.6Mn1.6-1.7O4, methods of preparing the SCs and PSCs that have improved properties for lithium extraction and concentration over single and multiple cycles are described.
Abstract:
The invention relates to lithium-selective inorganic ion exchangers for the extraction of lithium from lithium-containing natural and technological brines. More specifically, invention relates to a technology for recovering lithium in the presence of oxidizing or reducing agents. The inorganic ion-exchanger is present in the form of solid particles which are represented by a chemical non-stoichiometric compound in the form of an inorganic polymeric aqua-oxo-hydroxo complex intended for selective extraction of lithium from lithium-containing natural and industrial brines, the inorganic ion-exchanger being represented by the following general formula:
HaNbO(2.5+0.5·a)·bL2O·cWO3·dH2O;
wherein:
“a” is a number ranging from 0.5 to 2.0, “b” is a number ranging from 0.01 to 0.5, “c” is a number ranging from 0.01 to 0.2, and “d” is a number ranging from 0.1 to 2.0.
Abstract:
Methods and devices for providing dialysis treatment are provided. The device comprises a cartridge for providing regenerative dialysis, the cartridge comprising: a body having an inlet and an outlet and defining an interior, the interior including at least a layer comprising urease, a layer comprising zirconium oxide, a layer comprising zirconium phosphate, and a layer comprising carbon, wherein at least two of the layers are blended together to provide a gradient of the two materials.
Abstract:
A material in the form of an alveolar monolith consisting of a matrix of an inorganic oxide with a hierarchical and opened porosity comprising macropores, mesopores and micropores, said macropores, mesopores and micropores being interconnected, and nanoparticles of at least one metal cation exchange inorganic solid material being distributed in said porosity.A method for preparing this material and a method for separating a metal cation notably a cation of a radioactive isotope of a metal such as cesium using this material.
Abstract:
The present invention relates to the extraction of lithium from liquid resources, such as natural and synthetic brines, leachate solutions from clays and minerals, and recycled products.
Abstract:
A solid particulate composition useful in extracting a lithium salt from aqueous solutions, the composition comprising lithium, metal atoms, oxygen atoms, and at least one anionic species (X) selected from halide, nitrate, sulfate, carbonate and bicarbonate, all in a framework structure, wherein said metal atoms are selected from at least one of oxophilic main group metal and oxophilic transition metal atoms, provided that, if the metal atoms comprise aluminum atoms, then at least 10 mol % of said aluminum atoms are substituted with at least one metal atom selected from said at least one oxophilic main group and oxophilic transition metal atoms, other than aluminum, and wherein said lithium is present in said composition in an amount less than a saturated amount in order to permit extraction of lithium salt. Methods for extracting and recovering a lithium salt from an aqueous solution by use of the above-described composition are also described.
Abstract:
The present invention relates to a porous manganese oxide-based lithium absorbent and a method for preparing the same. The method includes the steps of preparing a mixture by mixing a reactant for the synthesis of a lithium-manganese oxide precursor powder with an inorganic binder, molding the mixture, preparing a porous lithium-manganese oxide precursor molded body by heat-treating the molded mixture, and acid-treating the porous lithium-manganese oxide precursor molded body such that lithium ions of the porous lithium-manganese oxide precursor are exchanged with hydrogen ions, wherein pores are formed in the lithium-manganese oxide precursor molded body by gas generated in the heat treatment. The porous manganese oxide-based lithium adsorbent according to the present invention is easy to handle and has many more adsorption reaction sites compared to existing molded adsorbents, thus providing high lithium adsorption efficiency.
Abstract:
An ion exchange material comprises an oxide of a first element selected from elements of Groups IVa, IVb, Va, Vb, VIa, VIb, VIIa, or lanthanide or actinide series of the Periodic Table, in combination with an oxide of at least one different element selected from elements of the afore-mentioned groups of the Periodic Table so as to form a composite material. For example, a composite ion exchange material may comprise silicon dioxide and manganese dioxide. By selecting the appropriate oxides a composite ion exchange material can be prepared which has greater mechanical and/or chemical stability than an individual oxide of the composite material.
Abstract:
A method of purifying cooling water used in nuclear reactors, which comprises contacting said cooling water with a hydrotalcite compound of the following formulaM.sub.1-x.sup.2+ M.sub.x.sup.3+ (OH).sub.2 A.sub.x/n.sup.n-. mH.sub.2 O (1)wherein M.sup.2+ represents a divalent metal cation, M.sup.3+ represents a trivalent metal cation, A.sup.n- represents an anion having a valence of n, and x and m satisfy the following expressions0
Abstract:
An inorganic ion exchanger prepared by kneading a blend of anatase type titanic acid or amorphous titanic acid with sulfuric acid, hydrochloric acid or phosphoric acid and water, extrusion molding the blend, and thereafter, heat treating the extruded product at an elevated temperature. The inorganic ion exchanger has high strength in water and is suitable for use in the removal or the concentration and recovery of injurious or beneficial materials contained in water.