Abstract:
A fluidized bed scrubber for use in gas cleaning systems, comprising means for introducing a quantity of polluted gas into a first chamber; means for removing a portion of the pollutants from the polluted gas in the first chamber; means for introducing the polluted gas into a second chamber; and means for removing additional pollutants from the polluted gas in the second chamber. The invention also provides a method for cleaning polluted gas, comprising the steps of passing the polluted gas from a combustion source through a fluidized bed scrubber, removing a plurality of pollutants within the fluidized bed scrubber, passing the fluidized gas through a reactor, passing the fluidized gas through a filter in order to remove further quantities of pollutants, and emitting the now-clean gas into the atmosphere.
Abstract:
A circulating fluidized bed reactor comprises a reaction chamber (10) with an upwardly directed flow of gas with entrained particulate solid material, a separator (18) for separating the particles from the gas flow, and a particle recycling system (23) for controlled return of the particles to the reaction chamber (10). The particle recycling system (23) may comprise means (47) for controlled return of the particles in a non-cooled condition and superposed fluid beds (55 and 59) which may be connected in parallel or in series as described for returning particles to the reaction chamber in a more or less cooled condition. The reactor may also render it possible to return various fractions of the particles into the reactor chamber (10) at different levels.
Abstract:
The waste sands are passed to a calcining chamber having a floor, connecting sidewalls and a top. The floor of the calcining chambers provided with a plurality of vents. The calcining chambers also connected to a separate firebox which produces fluidizing hot gases for fluidizing waste sands within the calcining chamber and forming a fluidized sand bed. The fluidizing hot gases are introduced into the calcining chamber by means of the floor vents. By precisely controlling the temperature of the waste sands within the fluidized bed, a more consistent product is produced while maintaining the temperature of the waste sands below a critical temperature at which the organic binders present on the sand grains would be fused to the waste sand grains.
Abstract:
A method and apparatus are disclosed for producing polyolefins by a fluidized gas phase polymerization process utilizing two stacked, substantially vertically aligned, reactors and a substantially vertical product transfer line for transfer of intermediate polyolefin polymer product from the polymerization zone of the upper reactor to the polymerization zone of the lower reactor. This abstract shall not be construed to define or limit in any way the scope of the invention, which is measured solely by the appended claims.
Abstract:
The combustion gas passages leading to a fluidized bed in a hot water or steam boiler are kept free of deposits which might block them by pulses of gas. The gas pulses may be generated from a pressurized reservoir with periodic or aperiodic openings of a valve in a gas line leading from the reservoir to the passages. Where the bottom of a fluidized bed comprises a pair of plates defining a plenum space therebetween and the combustion gas passages define nozzles extending through the plenum space, combustion air may be fed to the nozzles via the plenum space and the cleaning pulses may also be generated from gas supplied to the plenum space.
Abstract:
In a fluidized bed system, including a fluidized bed vessel and a separate stripping vessel below the fluidized bed wherein solids from the fluidized bed are introduced into the stripping vessel, there is provided a vent line from the top of the stripping vessel to the fluidized bed for venting gas from the stripper to the fuidized bed. A portion of the solids introduced into the stripper are carried into the vent line to maintain the static head between the top portion of the fluidized bed and the stripping vessel.
Abstract:
A system for producing phthalic anhydride by the catalytic oxidation of naphthalene, wherein without creating a significant pressure drop in the system substantially all of the catalyst particles are removed from the product stream before the product stream is sent to a battery of switch condensers for recovery of the phthalic anhydride.
Abstract:
A method for the production of high-caloric content gases is disclosed wherein feed gases containing CO and H.sub.2 are passed through at least two consecutive catalytic fluidized bed stages having cooling elements wherein, the feed gases being introduced to the first stage under pressure and to the subsequent stages under a pressure which is less than the pressure of the next preceding stage, and the gas produced from each preceding stage is fed to the next stage as a diluting gas. As a result of using the method of the present invention, one can avoid the necessity of compression of the feed gases in the subsequent reaction stages, thereby decreasing the cost as well as the technical difficulties encountered in the process.
Abstract:
Process and apparatus suitable for the regeneration of catalytic cracking catalyst particles and for the heating and partial conversion of coke particles from a coking process are described. The particles are heated in two successive zones, for example formed by two fluidized beds, conditions being controlled so that (1) only partial regeneration of catalyst particles or conversion of coke particles occurs in the first zone, and (2) there is no major evolution of heat from either zone.
Abstract:
Apparatus for reducing finely divided iron oxide material, comprising a reactor containing a vertical upper reaction chamber connected downwardly to a narrower, vertical reaction chamber. A cyclone separator is connected to the upper reaction chamber for separating solid material and recycling it to the reactor so that a circulating fluidized bed can be maintained in the apparatus. In accordance with the invention, a recycling conduit is connected to the bottom of the lower reaction chamber. A tapping-off shaft for reduced material is also connected to the bottom of the lower reaction chamber. A reducing agent is supplied to the upper reaction chamber, and combustion air is supplied to the bottom of the upper reaction chamber. The apparatus also comprises means for preheating the iron oxide material with the exhaust gas from the reactor and for passing said preheated iron oxide into the lower reaction chamber. The apparatus also comprises means for stripping the exhaust gas from CO.sub.2 and H.sub.2 O and recycling it to the reactor to be used as fluidizing gas.