Abstract:
Cleaning devices which use cleaning sheets affixed in traps are disclosed. The traps comprise first and second jaws, each comprising base and forward portions, each forward position having a forward surface. The forward portion of the second jaw is flexible in at least a first direction, such as towards a surface over which the device is configured to move. When the second jaw is relaxed, the forward portion of the second jaw is substantially coplanar with the forward portion of the first jaw and the forward surfaces are proximate or touching. When the second jaw is flexed in the first direction (e.g., by the application of a force from a user), the forward surface of the forward portion of the second jaw moves in the first direction, away from the forward surface of the first jaw. This opens a gap through which a portion of a sheet may be inserted.
Abstract:
The invention is generally related to the estimation of position and orientation of an object with respect to a local or a global coordinate system using reflected light sources. A typical application of the method and apparatus includes estimation and tracking of the position of a mobile autonomous robot. Other applications include estimation and tracking of an object for position-aware, ubiquitous devices. Additional applications include tracking of the positions of people or pets in an indoor environment. The methods and apparatus comprise one or more optical emitters, one or more optical sensors, signal processing circuitry, and signal processing methods to determine the position and orientation of at least one of the optical sensors based at least in part on the detection of the signal of one or more emitted light sources reflected from a surface.
Abstract:
Cleaning devices which use cleaning sheets affixed in traps are disclosed. The traps comprise first and second jaws, each comprising base and forward portions, each forward position having a forward surface. The forward portion of the second jaw is flexible in at least a first direction, such as towards a surface over which the device is configured to move. When the second jaw is relaxed, the forward portion of the second jaw is substantially coplanar with the forward portion of the first jaw and the forward surfaces are proximate or touching. When the second jaw is flexed in the first direction (e.g., by the application of a force from a user), the forward surface of the forward portion of the second jaw moves in the first direction, away from the forward surface of the first jaw. This opens a gap through which a portion of a sheet may be inserted.
Abstract:
Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
Abstract:
The invention is generally related to the systems and methods through which household appliances can provide intuitive and enhanced interactivity through visual inputs. In particular, the disclosure presents methods relating to control of a household appliance, such as a microwave or a refrigerator, via recognition of visual indicia, such as graphics, text, and the like, using a visual sensor such as a camera.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
Media and gesture recognition apparatus and methods are disclosed. A computerized system views a first printed media using an electronic visual sensor. The system retrieves information corresponding to the viewed printed media from a database. Using the electronic visual sensor, the system views at least a first user gesture relative to at least a portion of the first printed media. The system interprets the gesture as a command, and based at least in part on the first gesture and the retrieved information, the system electronically speaks aloud at least a portion of the retrieved information.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A circuit system for estimating position and orientation of a mobile object based on lights from a plurality of external light sources. The circuit comprises a position-sensitive light sensor for detecting the light sources and generating a first signal, an analog filter and amplification module (“AFA”) for filtering and amplifying the first signal and generating a second signal, a digital signal processor (“DSP”) for generating a coordinate system by extracting frequency components from the second signal.